Xenorhabdus nematophila, a gram-negative bacterium belonging to the family Enterobacteriaceae is a natural symbiont of a soil nematode from the family Steinernematidae. In this study cloning, expression, and purification of broad range iron regulated multidomain bacteriocin called xenocin from X. nematophila (66?kDa, encoded by xcinA gene) and its multidomain immunity protein (42?kDa, encoded by ximB gene) have been done. xcinA-ximB (N′ terminal 270?bp), translocation, and translocation-receptor domain of xcinA, ximB, and its hemolysin domain were cloned, expressed, and purified by single step Ni-NTA chromatography under native conditions. In the functional characterization, neutralization of xcinA toxicity by immunity domain of ximB gene was determined by endogenous assay. Exogenous toxic assays results showed that only the purified recombinant xenocin-immunity domain (10?kDa) protein complex had toxic activity. Atypical cognate immunity protein (42?kDa) of xenocin was fusion of immunity domain (10?kDa) and hemolysin domain (32?kDa). In silico analysis of immunity protein revealed its similarity with hemolysin and purine NTPase like proteins. Hemolytic activity was not observed in immunity protein or in its various domains; however, full-length immunity protein lacking Walker motif showed ATPase activity. Finally, using circular dichroism performed secondary structural analyses of all the recombinant proteins/protein complexes. 1. Introduction Bacteriocins are toxins produced by the bacteria to inhibit the growth of similar or closely related bacterial strain(s) during stress conditions [1]. They are structurally, functionally, and ecologically diverse, produced by almost all major lineages of Eubacteria and Archaebacteria [2]. Ribosomal encoded bacteriocins are generally secreted in the extracellular milieu by the producers where they recognize specific receptors on the surface of susceptible or target cells. They induce toxicity in the target cells by different mechanisms like enzymatic nuclease (DNase or RNase) or pore formation in cytoplasmic membrane [3]. Their structure comprises of three distinct domain organizations: (i) a domain involved in recognition of specific receptor R, (ii) a domain involved in translocation T, and (iii) a domain responsible for their toxic activity C. Molecular mass of ribosomal encoded bacteriocins vary from ~25 to 80?kDa and are broadly classified into two groups, group A and B, based on their cross-resistance [4]. These proteins have received increasing attention due to their potential use as preservatives in the
References
[1]
D. Gordon, E. Oliver, and J. Littlefield-Wyer, “The diversity of bacteriocins in Gram-negative bacteria,” in Bacteriocins, M. A. Riley and M. A. Chavan, Eds., Springer, 2007.
[2]
M. A. Riley and J. E. Wertz, “Bacteriocin diversity: ecological and evolutionary perspectives,” Biochimie, vol. 84, no. 5-6, pp. 357–364, 2002.
[3]
E. Cascales, S. K. Buchanan, D. Duché et al., “Colicin biology,” Microbiology and Molecular Biology Reviews, vol. 71, no. 1, pp. 158–229, 2007.
[4]
L. Cursino, J. ?marda, E. Chartone-Souza, and A. M. A. Nascimento, “Recent updated aspects of colicins of enterobacteriaceae,” Brazilian Journal of Microbiology, vol. 33, no. 3, pp. 185–195, 2002.
[5]
J. Singh and C. Ghosh, “Ribosomal encoded bacteriocins: their functional insight and applications,” Journal of Microbiology Research, vol. 2, pp. 19–25, 2012.
[6]
N. E. Boemare and R. J. Akhurst, “Biochemical and physiological characterization of colony form variants in Xenorhabdus spp. (Enterobacteriaceae),” Journal of General Microbiology, vol. 134, no. 3, pp. 751–761, 1988.
[7]
E. E. Herbert and H. Goodrich-Blair, “Friend and foe: the two faces of Xenorhabdus nematophila,” Nature Reviews Microbiology, vol. 5, no. 8, pp. 634–646, 2007.
[8]
R. J. Akhurst, “Bacterial symbionts of entomopatho-genic nematodes: the power behind the throne,” in Nematodes and the Biological Control of Insect Pests, R. Bedding, R. Akhurst, and H. Kaya, Eds., pp. 127–136, CSIRO Publications, Melbourne, Australia, 1993.
[9]
H. K. Kaya and R. Gaugler, “Entomopathogenic nematodes,” Annual Review of Entomology, vol. 38, pp. 181–206, 1993.
[10]
R. J. Akhurst, “Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae,” Journal of General Microbiology, vol. 128, no. 12, pp. 3061–3065, 1982.
[11]
K. H. Nealson, T. M. Schmidt, and B. Bleakley, “Physiology and biochemistry of Xenorhabdus,” in Entomopathogenic Nematodes in Biological Control, R. Gaugler and H. Kaya, Eds., pp. 271–284, CRC Press, Boca Raton, Fla, USA, 1990.
[12]
G. A. Couche and R. P. Gregson, “Protein inclusions produced by the entomopathogenic bacterium Xenorhabdus nematophilus subsp. nematophilus,” Journal of Bacteriology, vol. 169, no. 11, pp. 5279–5288, 1987.
[13]
J. Singh and N. Banerjee, “Transcriptional analysis and functional characterization of a gene pair encoding iron-regulated xenocin and immunity proteins of Xenorhabdus nematophila,” Journal of Bacteriology, vol. 190, no. 11, pp. 3877–3885, 2008.
[14]
J. Singh, “Structural and functional interferences from a molecular structural model of Xenocin Toxin from Xenorhabdus nematophila,” American Journal of Bioinformatics Research, vol. 2, pp. 55–60, 2012.
[15]
S. Soelaiman, K. Jakes, N. Wu, Li. Chunmin, and M. Shoham, “Crystal structure of colicin E3: implications for cell entry and ribosome inactivation,” Molecular Cell, vol. 8, no. 5, pp. 1053–1062, 2001.
[16]
M. de Zamaroczy, L. Mora, A. Lecuyer, V. Géli, and R. H. Buckingham, “Cleavage of colicin D is necessary for cell killing and requires the inner membrane peptidase LepB,” Molecular Cell, vol. 8, pp. 159S–168S, 2001.
[17]
S. D. Zakharov and W. A. Cramer, “Colicin crystal structures: pathways and mechanisms for colicin insertion into membranes,” Biochimica et Biophysica Acta, vol. 1565, no. 2, pp. 333–346, 2002.
[18]
C. Liao, K. Hsiao, Y. Liu, P. Leng, H. S. Yuen, and K. Chak, “Processing of DNase domain during translocation of colicin E7 across the membrane of Escherichia coli,” Biochemical and Biophysical Research Communications, vol. 284, no. 3, pp. 556–562, 2001.
[19]
C. Ramakrishnan, V. S. Dani, and T. Ramasarma, “A conformational analysis of Walker motif A [GXXXXGKT (S)] in nucleotide-binding and other proteins,” Protein Engineering, vol. 15, no. 10, pp. 783–798, 2002.
[20]
K. Hsia, C. Li, and H. S. Yuan, “Structural and functional insight into sugar-nonspecific nucleases in host defense,” Current Opinion in Structural Biology, vol. 15, no. 1, pp. 126–134, 2005.
[21]
D. Walker, L. Lancaster, R. James, and C. Kleanthous, “Identification of the catalytic motif of the microbial ribosome inactivating cytotoxin colicin E3,” Protein Science, vol. 13, no. 6, pp. 1603–1611, 2004.