The galactic cosmic rays are the main source of ionization in the troposphere of the Earth. Solar energetic particles of MeV energies cause an excess of ionization in the atmosphere, specifically over polar caps. The ionization effect during the major ground level enhancement 69 on January 20, 2005 is studied at various time scales. The estimation of ion rate is based on a recent numerical model for cosmic-ray-induced ionization. The ionization effect in the Earth atmosphere is obtained on the basis of solar proton energy spectra, reconstructed from GOES 11 measurements and subsequent full Monte Carlo simulation of cosmic-ray-induced atmospheric cascade. The evolution of atmospheric cascade is performed with CORSIKA 6.990 code using FLUKA 2011 and QGSJET II hadron interaction models. The atmospheric ion rate is explicitly obtained for various latitudes, namely, 40°N, 60°N and 80°N. The time evolution of obtained ion rates is presented. The short- and medium-term ionization effect is compared with the average effect due to galactic cosmic rays. It is demonstrated that ionization effect is significant only in subpolar and polar atmosphere during the major ground level enhancement of January 20, 2005. It is negative in troposphere at midlatitude, because of the accompanying Forbush effect. 1. Introduction Cosmic rays are high, ultrahigh, and extremely high energy particles of extraterrestrial origin, mostly protons. Cosmic rays (CRs) constantly impinge the Earth's atmosphere. While the low-energy particles are absorbed in the atmosphere, those with energies greater than 1?GeV/nucleon generate new particles through interactions with atomic nuclei. They are an important source of ionization in the Earth atmosphere [1]. The ionization in the stratosphere and troposphere is governed by galactic cosmic rays [2]. They initiate a complicated nuclear-electromagnetic-muon cascade resulting in an ionization of the ambient air. In such a cascade a small fraction of the initial primary particle energy reaches the ground as high energy secondary particles. Most of the primary energy is released in the atmosphere by ionization and excitation of the air molecules, resulting in an ionization of the ambient air. The maximum in secondary particle energy release is observed at altitudes of 15–26?km depending on latitude and solar activity level. This is the Pfotzer maximum. The galactic cosmic ray (GCR) is affected by solar activity. They follow the 11-year solar cycle and respond to long and short time scale solar-wind variations. They are modulated with the opposite phase,
References
[1]
G. A. Bazilevskaya, I. G. Usoskin, E. O. Flückiger et al., “Cosmic ray induced ion production in the atmosphere,” Space Science Reviews, vol. 137, no. 1–4, pp. 149–173, 2008.
[2]
I. G. Usoskin, L. Desorgher, P. Velinov et al., “Ionization of the earth's atmosphere by solar and galactic cosmic rays,” Acta Geophysica, vol. 57, no. 1, pp. 88–101, 2009.
[3]
S. E. Forbush, “Cosmic-ray intensity variations during two solar cycles,” Journal of Geophysical Research, vol. 63, no. 4, pp. 651–669, 1958.
[4]
I. G. Usoskin, O. G. Gladysheva, and G. A. Kovaltsov, “Cosmic ray-induced ionization in the atmosphere: spatial and temporal changes,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 66, no. 18, pp. 1791–1796, 2004.
[5]
L. Desorgher, E. O. Flückiger, M. Gurtner, M. R. Moser, and R. Bütikofer, “Atmocosmics: a geant 4 code for computing the interaction of cosmic rays with the earth's atmosphere,” International Journal of Modern Physics A, vol. 20, no. 29, pp. 6802–6804, 2005.
[6]
I. G. Usoskin and G. A. Kovaltsov, “Cosmic ray induced ionization in the atmosphere: full modeling and practical applications,” Journal of Geophysical Research D, vol. 111, Article ID D21206, 2006.
[7]
A. Mishev and P. I. Y. Velinov, “Atmosphere ionization due to cosmic ray protons estimated with Corsika code simulations,” Comptes Rendus de L'Academie Bulgare des Sciences, vol. 60, no. 3, pp. 225–230, 2007.
[8]
P. I. Y. Velinov, A. Mishev, and L. Mateev, “Model for induced ionization by galactic cosmic rays in the Earth atmosphere and ionosphere,” Advances in Space Research, vol. 44, no. 9, pp. 1002–1007, 2009.
[9]
P. I. Y. Velinov, G. Nestorov, and L. Dorman, Cosmic Ray Influence on the Ionosphere and on the Radio-Wave Propagation, Bulgarian Academy of Sciences Publishing House, Sofia, Bulgaria, 1974.
[10]
H. S. Porter, C. H. Jackman, and A. E. S. Green, “Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air,” The Journal of Chemical Physics, vol. 65, no. 1, pp. 154–167, 1976.
[11]
D. Heck, J. Knapp, J. N. Capdevielle, et al., “CORSIKA: a monte carlo code to simulate extensive air showers,” Forschungszentrum Karlsruhe Report FZKA 6019, 1998.
[12]
G. Battistoni, S. Muraro, P. R. Sala, et al., “The FLUKA code: description and benchmarking,” in Proceedings of theHadronic Shower Simulation Workshop, M. Albrow and R. Raja, Eds., vol. 896 of AIP Conference Proceeding, pp. 31–49, September 20062007.
[13]
S. Ostapchenko, “QGSJET-II: towards reliable description of very high energy hadronic interactions,” Nuclear Physics B, vol. 151, no. 1, pp. 143–146, 2006.
[14]
R. Vainio, L. Desorgher, D. Heynderickx, et al., “Dynamics of the Earth's particle radiation environment,” Space Science Reviews, vol. 147, no. 3-4, pp. 187–231, 2009.
[15]
A. Mishev, P. I. Y. Velinov, and L. Mateev, “Atmospheric ionization due to solar cosmic rays from 20 January 2005 calculated with Monte Carlo simulations,” Comptes Rendus de L'Academie Bulgare des Sciences, vol. 63, no. 11, pp. 1635–1642, 2010.
[16]
I. G. Usoskin, G. A. Kovaltsov, I. A. Mironova, A. J. Tylka, and W. F. Dietrich, “Ionization effect of solar particle GLE events in low and middle atmosphere,” Atmospheric Chemistry and Physics, vol. 11, no. 5, pp. 1979–1988, 2011.
[17]
A. L. Mishev, P. I. Y. Velinov, L. Mateev, and Y. Tassev, “Ionization effect of solar protons in the Earth atmosphere—case study of the 20 January 2005 SEP event,” Advances in Space Research, vol. 48, no. 7, pp. 1232–1237, 2011.
[18]
A. Mishev, P. I. Y. Velinov, and L. Mateev, “Ion production rate profiles in the atmosphere due to solar energetic particles on 28 october 2003 obtained with CORSIKA 6.52 simulations,” Comptes Rendus de L'Academie Bulgare des Sciences, vol. 64, no. 6, pp. 859–866, 2011.
[19]
R. Butikofer, E. O. Fluckiger, L. Desorgher, and M. R. Moser, “The extreme solar cosmic ray particle event on 20 January 2005 and its influence on the radiation dose rate at aircraft altitude,” Science of the Total Environment, vol. 391, no. 2-3, pp. 177–183, 2008.
[20]
N. K. Bostanjyan, A. A. Chilingarian, V. S. Eganov, and G. G. Karapetyan, “On the production of highest energy solar protons at 20 January 2005,” Advances in Space Research, vol. 39, no. 9, pp. 1456–1459, 2007.
[21]
C. Plainaki, A. Belov, E. Eroshenko, H. Mavromichalaki, and V. Yanke, “Modeling ground level enhancements: event of 20 January 2005,” Journal of Geophysical Research A, vol. 112, no. 4, Article ID A04102, 2007.
[22]
R. A. Mewaldt, M. D. Looper, C. M. S. Cohen, et al., “Solar-particle energy spectra during the large events of October-November 2003 and January 2005,” in Proceedings of the 29th International Cosmic Ray Conference, vol. 1, pp. 111–114, Pune, India, 2005.
[23]
V. S. Makhmutov, G. A. Bazilevskaya, B. B. Grozdevsky, et al., “Solar cosmic ray spectra in the 20 January GLE: comparison of simulations with ballon and neutron monitor observations,” in Proceedings of the 31th International Cosmic Ray Conference, pp. 1–4, Lodz, Poland, 2009.
[24]
A. Mishev and P. I. Y. Velinov, “Effects of atmospheric profile variations on yield ionization function Y in the atmosphere,” Comptes Rendus de L'Academie Bulgare des Sciences, vol. 61, no. 5, pp. 639–644, 2008.
[25]
A. L. Mishev and P. Velinov, “The effect of model assumptions on computations of cosmic ray induced ionization in the atmosphere,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 72, no. 5-6, pp. 476–481, 2010.
[26]
M. Calisto, I. Usoskin, E. Rozanov, and T. Peter, “Influence of Galactic Cosmic Rays on atmospheric composition and dynamics,” Atmospheric Chemistry and Physics, vol. 11, no. 9, pp. 4547–4556, 2011.
[27]
L. I. Dorman, Cosmic Rays in the Earth's Atmosphere and Underground, Kluwer Academic, Dordrecht, The Netherlands, 2004.
[28]
B. Funke, A. Baumgaertner, M. Calisto et al., “Composition changes after the "halloween" solar proton event: the High-Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study,” Atmospheric Chemistry and Physics Discussions, vol. 11, no. 3, pp. 9407–9514, 2011.
[29]
A. Krivolutsky, A. Kuminov, and T. Vyushkova, “Ionization of the atmosphere caused by solar protons and its influence on ozonosphere of the Earth during 1994–2003,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 67, no. 1-2, pp. 105–117, 2005.
[30]
A. A. Krivolutsky, A. V. Klyuchnikova, G. R. Zakharov, T. Y. Vyushkova, and A. A. Kuminov, “Dynamical response of the middle atmosphere to solar proton event of July 2000: three-dimensional model simulations,” Advances in Space Research, vol. 37, no. 8, pp. 1602–1613, 2006.
[31]
A. Damiani, M. Storini, M. Laurenza, and C. Rafanelli, “Solar particle effects on minor components of the Polar atmosphere,” Annales Geophysicae, vol. 26, no. 2, pp. 361–370, 2008.
[32]
C. H. Jackman, D. R. Marsh, F. M. Vitt et al., “Short- and medium-term atmospheric constituent effects of very large solar proton events,” Atmospheric Chemistry and Physics, vol. 8, no. 3, pp. 765–785, 2008.
[33]
C. H. Jackman, D. R. Marsh, F. M. Vitt et al., “Northern Hemisphere atmospheric influence of the solar proton events and ground level enhancement in January 2005,” Atmospheric Chemistry and Physics, vol. 11, no. 13, pp. 6153–6166, 2011.
[34]
A. Mishev, P. I. Y. Velinov, and L. Mateev, “Atmospheric ionization due to solar cosmic rays from 20 January 2005 calculated with Monte Carlo simulations,” Comptes Rendus de L'Academie Bulgare des Sciences, vol. 63, no. 11, pp. 1635–1642, 2010.
[35]
P. I. Y. Velinov, S. Asenovski, and L. Mateev, “Simulation of cosmic ray ionization profiles in the middle atmosphere and lower ionosphere on account of characteristic energy intervals,” Comptes rendus de l’Academie bulgare des Sciences, vol. 64, no. 9, pp. 1303–1310, 2011.
[36]
K. Kudela, M. Storini, M. Y. Hofer, and A. Belov, “Cosmic rays in relation to space weather,” Space Science Reviews, vol. 93, no. 1-2, pp. 153–174, 2000.
[37]
A. L. Mishev and J. N. Stamenov, “Present status and further possibilities for space weather studies at BEO Moussala,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 70, no. 2-4, pp. 680–685, 2008.
[38]
L. I. Miroshnichenko, “Solar cosmic rays in the system of solar-terrestrial relations,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 70, no. 2-4, pp. 450–466, 2008.
[39]
A. L. Mishev, “A study of atmospheric processes based on neutron monitor data and Cherenkov counter measurements at high mountain altitude,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 72, no. 16, pp. 1195–1199, 2010.