全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Analysis of Convective Thunderstorm Split Cells in South-Eastern Romania

DOI: 10.1155/2013/162541

Full-Text   Cite this paper   Add to My Lib

Abstract:

The mesoscale configurations are analysed associated withthesplitting process of convective cells responsible for severe weather phenomena in the south-eastern part of Romania. The analysis was performed using products from the S-band Doppler weather radar located in Medgidia. The cases studied were chosen to cover various synoptic configurations when the cell splitting process occurs. To detect the presence and intensity of the tropospheric jet, the Doppler velocity field and vertical wind profiles derived from radar algorithms were used. The relative Doppler velocity field was used to study relative flow associated with convective cells. Trajectories and rotational characteristics associated with convective cells were obtained from reflectivity and relative Doppler velocity fields at various elevations. This analysis highlights the main dynamic features associated with the splitting process of convective cells: the tropospheric jet and vertical moisture flow associated with the configuration of the flow relative to the convective cells for the lower and upper tropospheric layers. These dynamic characteristics seen in the Doppler based velocity field and in the relative Doppler velocity field to the storm can indicate further evolution of convective developments, with direct implications to very short range forecast (nowcasting). 1. Introduction In south-eastern Romania, in the convective season (from May to September), severe weather phenomena develop frequently and evolve [1–5], sometimes leading to significant damages. Analysis of severe convective events and their structure, at least for certain classes of phenomena (isolated convective cells), taking into account the mesoscale configuration can improve the nowcasting procedures. Using an S-band Doppler radar (10?cm wavelength), we see that the mesoscale phenomena (supercellular thunderstorms) have certain features during their dynamic evolution. Of great importance in understanding the evolution of supercells is the splitting process (separation of the convective cells in two other ones rotating opposite to one another, namely, cyclonic and anticyclonic), a process that takes place during the evolution of convective developments and is closely linked to the state of mesoscale dynamic configuration, especially vertical wind shear [6, 7]. This process has been studied both qualitatively [8–18] and by numeric analysis [19–21], highlighting the interaction between horizontal vorticity from the vertical profile of horizontal wind and the updraft. Depending on the curvature of the hodograph, the

References

[1]  A. Stan-Sion and C. Soci, “Supercell environment in Southeastern Romania,” in Proceedings of the 5th Annual Meeting of the European Meteorological Society (EMS '05), 7th European Conference on Applications of Meteorology (ECAM '05), pp. 12–16, Utrecht, The Netherland, September 2005.
[2]  A. Stan-Sion and B. Antonescu, “Mesocyclones in Romania—characteristics and environments,” in Proceedings of the 23rd AMS Conference on Severe Local Storms (SLS '06), Louis, Mo, USA, November 2006.
[3]  A. Bell, D. Carbunaru, B. Antonescu, and S. Burcea, “The Black Sea influence in convective storms initiation in South Eastern Romania,” in Proceedings of the 34th AMS Conference on Radar Meteorology, Williamsburg, Va, USA, October 2009.
[4]  A. Bell, “Mesoscale environment for tornadic supercells in SE Romania,” in Proceedings of the 6th European Conference on Radar in Meteorology and Hydrology: Advances in Radar Technology, Sibiu, Romania, September 2010.
[5]  B. Antonescu, D. Carbunaru, M. Sasu, S. Burcea, and A. Bell, “A climatology of supercells in Romania,” in Proceedings of the 6th European Conference on Radar in Meteorology and Hydrology: Advances in Radar Technology, Sibiu, Romania, September 2010.
[6]  C. A. Doswell III, On the Use of Hodographs—Vertical Wind Profile Information in Severe Storms Forecasting, U. S. Dept. Of Commerce/NOAA, National Severe Storms Laboratory and National Weather Service, Southern Region, Fort Worth, Tex, USA, 1988.
[7]  M. J. Bunkers, “Vertical wind shear associated with left-moving supercells,” Weather and Forecasting, vol. 17, no. 4, pp. 845–855, 2002.
[8]  R. Rotunno, “On the evolution of thunderstorm rotation,” Monthly Weather Review, vol. 109, pp. 577–586, 1981.
[9]  R. Rotunno and J. B. Klemp, “The influence of shear-induced pressure gradient on thunderstorm motion,” Monthly Weather Review, vol. 110, no. 2, pp. 136–151, 1982.
[10]  E. A. Brandes, “Vertical vorticity generation and mesocyclone sustenance in tornadic thunderstorms: the observational evidence,” Monthly Weather Review, vol. 112, no. 11, pp. 2253–2269, 1984.
[11]  R. Davies-Jones, “Streamwise vorticity: the origin of updraft rotation in supercell storms,” Journal of the Atmospheric Sciences, vol. 41, no. 20, pp. 2991–3006, 1984.
[12]  J. B. Klemp, “Dynamic of tornadic thunderstorms,” Annual Review of Fluid Mechanics, vol. 19, pp. 369–402, 1987.
[13]  R. Davies-Jones, “Linear and nonlinear propagation of supercell storms,” Journal of the Atmospheric Sciences, vol. 59, no. 22, pp. 3178–3205, 2002.
[14]  R. P. Davies-Jones, “Reply to comment on Linear and nonlinear propagation of supercell storms,” Journal of the Atmospheric Sciences, vol. 60, pp. 2420–2426, 2003.
[15]  R. Rotunno and M. L. Weisman, “Comment on Linear and nonlinear propagation of supercell storms,” Journal of the Atmospheric Sciences, vol. 60, pp. 2413–2419, 2003.
[16]  J. M. L. Dahl, Supercells—Their Dynamics and Prediction, Free University of Berlin, Institute of Meteorology, Department of Theoretical Meteorology, 2006.
[17]  Y.-L. Lin, Mesoscale Dynamics, Cambridge University Press, 2007.
[18]  P. Markowski and Y. Richardson, Mesoscale Meteorology in Midlatitudes, Royal Meteorological Society, 2010.
[19]  J. B. Klemp and R. B. Wilhelmson, “Simulation of right- and left-moving storms produced through storm splitting,” Journal of the Atmospheric Sciences, vol. 35, pp. 1097–1110, 1978.
[20]  M. L. Weisman and J. B. Klemp, “The dependence of numerically simulated convective storms on vertical wind shear and buoyancy,” Monthly Weather Review, vol. 110, no. 6, pp. 504–520, 1982.
[21]  M. L. Weisman and J. B. Klemp, “The structure and classification of numerically simulated convective storms in directionally varying wind shears,” Monthly Weather Review, vol. 112, no. 12, pp. 2479–2498, 1984.
[22]  L. D. Grasso, “The dissipation of a left-moving cell in a severe storm environment,” Monthly Weather Review, vol. 128, no. 8, pp. 2797–2815, 2000.
[23]  D. L. Andra Jr., “Observation of an anticyclonically rotating severe storm,” in Proceedings of the 17th Conference onn Severe Local Storms, pp. 186–190, American Meteorological Society, St. Louis, Mo, USA, 1993.
[24]  R. P. Kleya, “A radar and synoptic scale analysis of a splitting thunderstorm over north-central Texas on November 10, 1992,” in Proceedings of the 17th Conference On Severe Local Storms, pp. 211–213, American Meteorological Society, St. Louis, Mo, USA, 1993.
[25]  F. H. Glass and S. C. Truett, “Observation of a splitting severe thunderstorm exhibiting both supercellular and multicellular traits,” in Proceedings of the 17th Conference On Severe Local Storms, pp. 224–228, American Meteorological Society, St. Louis, Mo, USA, 1993.
[26]  R. A. Brown and R. J. Meitín, “Evolution and morphology of two splitting thunderstorms with dominant left-moving members,” Monthly Weather Review, vol. 122, pp. 2052–2067, 1994.
[27]  G.W. Carbin, “Analysis of a splitting severe thunderstorm using the WSR-88D,” NWS Eastern Region WSR-88D Operational Note 08, National Weather Service, Eastern Region Headquarters, Bohemia, NY, USA, 1997.
[28]  L. D. Grasso and E. R. Hilgendorf, “Observations of a severe left moving thunderstorm,” Weather and Forecasting, vol. 16, no. 4, pp. 500–511, 2001.
[29]  J. P. Monteverdi, W. Blier, G. Stumpf, W. Pi, and K. Anderson, “First WSR-88D documentation of an anticyclonic supercell with anticyclonic tornadoes: the Sunnyvale-Los Altos, California, tornadoes of 4 May 1998,” Monthly Weather Review, vol. 129, no. 11, pp. 2805–2814, 2001.
[30]  J. F. Dostalek, J. F. Weaver, and G. L. Phillips, “Aspects of a tornadic left-moving thunderstorm of 25 may 1999,” Weather and Forecasting, vol. 19, no. 3, pp. 614–626, 2004.
[31]  D. T. Lindsey and M. J. Bunkers, “Observations of a severe, left-moving supercell on 4 May 2003,” Weather and Forecasting, vol. 20, no. 1, pp. 15–22, 2005.
[32]  R. Edwards and S. J. Hodanish, “Photographic documentation and environmental analysis of an intense, anticyclonic supercell on the Colorado plains,” Monthly Weather Review, vol. 134, no. 12, pp. 3753–3763, 2006.
[33]  E. N. Rasmussen and J. M. Straka, “Variations in supercell morphology. Part I: observations of the role of upper-level storm-relative flow,” Monthly Weather Review, vol. 126, no. 9, pp. 2406–2421, 1998.
[34]  National Oceanic Atmospheric Administration (NOAA), http://www.wdtb.noaa.gov/courses/dloc/index.html.
[35]  R. M. Lhermitte and D. Atlas, “Precipitation motion by pulse Doppler radar,” in Proceedings of the 9th Conference on Radar Meteorology, pp. 218–223, American Meteorological Society, 1961.
[36]  K. A. Browning and R. Wexler, “The determination of kinematic properties of a wind field using Doppler radar,” Journal of Applied Meteorology, vol. 7, pp. 105–113, 1968.
[37]  R. A. Fulton, P. Breidenbach, D. J. Sco, D. A. Miler, and T. O’Bannon, “The WSR-98D rainfall algorithm,” Weather Forecast, vol. 13, pp. 337–395, 1988.
[38]  D. S. Zrnic, “Three-body scattering produces precipitation signature of special diagnostic value,” Radio Science, vol. 22, no. 1, pp. 76–86, 1987.
[39]  J. B. Wilson and D. Reum, “The flare echo: reflectivity and velocity signature,” Journal of Atmospheric and Oceanic Technology, vol. 5, pp. 197–205, 1988.
[40]  L. R. Lemon, “The Radar “Three-Body Scatter Spike”: an operational large-hail signature,” Weather and Forecasting, vol. 13, pp. 327–340, 1988.
[41]  D. A. Bennetts and J. C. Sharp, “The relevance of conditional symmetric instability to the prediction of mesoscale frontal rainbands,” Quarterly Journal Royal Meteorological Society, vol. 108, no. 457, pp. 595–602, 1982.
[42]  D. M. Schultz and J. A. Knox, “Banded convection caused by frontogenesis in a conditionaly, symmetrically, and inertialy unstable environment,” Monthly Weather Review, vol. 135, pp. 2095–2110, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133