全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Numerical Simulations and Analysis of June 16, 2010 Heavy Rainfall Event over Singapore Using the WRFV3 Model

DOI: 10.1155/2013/825395

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Numerical Simulations of the June 16, 2010, Heavy Rainfall Event over Singapore are highlighted by an unprecedented precipitation which produced widespread, massive flooding in and around Singapore. The objective of this study is to check the ability of Weather Research Forecasting version 3 (WRFV3) model to predict the heavy rain event over Singapore. Results suggest that simulated precipitation amounts are sensitive to the choice of cumulus parameterization. Various model configurations with initial and boundary conditions from the NCEP Final Global Analysis (FNL), convective and microphysical process parameterizations, and nested-grid interactions have been tested with 48-hour (June 15–17, 2010) integrations of the WRFV3. The spatial distributions of large-scale circulation and dynamical and thermodynamical fields have been simulated reasonably well in the model. The model produced maximum precipitation of ~5 cm over Changi airport which is very near to observation (6.4?cm recorded at Changi airport). The model simulated dynamic and thermodynamic features at 00UTC of June 16, 2010, lead to understand the structure of the mesoscale convective system (MCS) that caused the extreme precipitation over Singapore. It is observed that Singapore heavy rain was the result of an interaction of synoptic-scale weather systems with the mesoscale features. 1. Introduction On 16th June 2010, a heavy rainfall event occurred in Singapore producing devastating flash flood and tremendous amount of property damage (Singapore’s national water agency (PUB) report, Annual Weather Review, 2010, NEA, Singapore). Heavy rainfall is usually resulted from individual mesoscale storms or mesoscale convective systems (MCSs) embedded in synoptic-scale disturbances [1]. High-resolution observations and numerical modeling technique are needed to better predict heavy rainfall events and understand the evolution and development mechanisms of mesoscale convection and storms responsible for heavy rainfall. In this study, a high-resolution version of the WRFV3 (Weather Research and Forecasting Version 3) model is used to investigate the predictability of heavy rainfall over Singapore and try to exploit the mesoscale convective systems which are highly interacting with synoptic-scale environment. WRFV3 has been used successfully for predicting heavy rainfall which occurred in many different countries and for understanding the associated convective systems [2–7]. The objective of the present study is to identify the best possible microphysics, cumulus, and PBL scheme for simulation of

References

[1]  D. K. Lee, H. R. Kim, and S. Y. Hong, “Heavy rainfall over Korea during 1980–1990,” Korean Journal of the Atmospheric Sciences, vol. 1, pp. 32–50, 1998.
[2]  A. Routray, U. C. Mohanty, A.K. Das, and N. V. Sam, “Study of HPE over west coast of India using analysis nudging inMM5 during ARMEX-I,” Mausam, vol. 56, pp. 107–120, 2005.
[3]  H. R. Hatwar, Y. V. Rama Rao, S. K. Roy Bhowmik, and D. Joardar, “An impact of ARMEX data on limited area model analysis and forecast system of India Meteorological Department—a preliminary study,” Mausam, vol. 56, pp. 131–138, 2005.
[4]  A. K. Bohra, S. Basu, E. N. Rajagopal et al., “Heavy rainfall episode over Mumbai on 26 July 2005: assessment of NWP guidance,” Current Science, vol. 90, no. 9, pp. 1188–1194, 2006.
[5]  D. R. Sikka and P. Sanjeeva Rao, “The use and performance of mesoscale models over the Indian region for two high-impact events,” Natural Hazards, vol. 44, no. 3, pp. 353–372, 2008.
[6]  A. Kumar, J. Dudhia, R. Rotunno, D. Niyogi, and U. C. Mohanty, “Analysis of the 26 July 2005 heavy rain event over Mumbai, India using the Weather Research and Forecasting (WRF) model,” Quarterly Journal of the Royal Meteorological Society, vol. 134, no. 636, pp. 1897–1910, 2008.
[7]  A. Staniforth, “Regional modeling: a theoretical discussion,” Meteorology and Atmospheric Physics, vol. 63, no. 1-2, pp. 15–29, 1997.
[8]  D. B. V. Rao and D. H. Prasad, “Impact of special observations on the numerical simulations of a HPE during ARMEX-Phase I,” Mausam, vol. 56, pp. 121–130, 2005.
[9]  Z. I. Janjic, “A nonhydrostatic model based on a new approach,” Meteorology and Atmospheric Physics, vol. 82, pp. 271–285, 2003.
[10]  A. J. Litta, S. M Ididcula, U. C. Mohanty, and S. K. Prasad, “Comparison of thunderstorm simulations from WRF-NMM and WRF-ARW models over East Indian region,” The Scientific World Journal, vol. 2012, Article ID 951870, 20 pages, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133