We analyze long-term time series of daily average PM10 concentrations in Chengdu city. Detrended fluctuation analysis of the time series shows long range correlation at one-year temporal scale. Spectral analysis of the time series indicates 1/f noise behavior. The probability distribution functions of PM10 concentrations fluctuation have a scale-invariant structure. Why do the complex structures of PM10 concentrations evolution exhibit scale-invariant? We consider that these complex dynamical characteristics can be recognized as the footprint of self-organized criticality (SOC). Based on the theory of self-organized criticality, a simplified sandpile model for PM10 pollution with a nondimensional formalism is put forward. Our model can give a good prediction of scale-invariant in PM10 evolution. A qualitative explanation of the complex dynamics observed in PM10 evolution is suggested. The work supports the proposal that PM10 evolution acts as a SOC process on calm weather. New theory suggests one way to understand the origin of complex dynamical characteristics in PM10 pollution. 1. Introduction The adverse effects of PM10 have been recognized in environmental sciences. Besides the reduction of visibility, the direct impact on human health via inhalation is an important issue [1]. It will be very useful to develop accurate PM10 concentrations forecasting methods, which can help to put forward effective warning strategies to reduce impacts on public health during episodes or poor air quality [2]. In recent years, some PM10 concentrations forecasting methods have been developed [3]. These methods mainly come from two approaches. One is to establish accurate atmospheric model based on meteorologic, physical, and chemical process. The other is to find inherent correlations based on the statistical analysis of the collected data. However, there are still some pending problems with predicting PM10 concentrations. PM10 evolution is highly complex events involving human factors as well as meteorologic, topographic, physical, and chemical conditions. Interrelationships between these processes and PM10 concentrations are complex and nonlinear. The circumstances that determine high PM10 concentrations are uncertain sometimes [4]. So the microscopic physical and chemical mechanisms that drive PM10 temporal evolutions are not well understood. However, even if such microcosmic dynamical mechanisms have been illuminated, it is likely that the system would be highly nonlinear without any simple way to predict emergent behavior [5]. As asked by Nagel [6], “is there
References
[1]
A. Nel, “Air pollution-related illness: effects of particles,” Science, vol. 308, no. 5723, pp. 804–806, 2005.
[2]
A. B. Chelani, “Change detection using CUSUM and modified CUSUM method in air pollutant concentrations at traffic site in Delhi,” Stochastic Environmental Research and Risk Assessment, vol. 25, no. 6, pp. 827–834, 2011.
[3]
A. Zolghadri and F. Cazaurang, “Adaptive nonlinear state-space modelling for the prediction of daily mean PM10 concentrations,” Environmental Modelling and Software, vol. 21, no. 6, pp. 885–894, 2006.
[4]
B. Sivakumar and R. Berndtsson, “Modeling and prediction of complex environmental systems,” Stochastic Environmental Research and Risk Assessment, vol. 23, no. 7, pp. 861–862, 2009.
[5]
C. Lee and S. Lin, “Chaos in air pollutant concentration (APC) time series,” Aerosol and Air Quality Research, vol. 8, no. 4, pp. 381–391, 2008.
[6]
S. R. Nagel, “Instabilities in a sandpile,” Reviews of Modern Physics, vol. 64, no. 1, pp. 321–325, 1992.
[7]
C.-K. Lee, D.-S. Ho, C.-C. Yu, and C.-C. Wang, “Fractal analysis of temporal variation of air pollutant concentration by box counting,” Environmental Modelling and Software, vol. 18, no. 3, pp. 243–251, 2003.
[8]
C. Varotsos, J. Ondov, and M. Efstathiou, “Scaling properties of air pollution in Athens, Greece and Baltimore, Maryland,” Atmospheric Environment, vol. 39, no. 22, pp. 4041–4047, 2005.
[9]
C. Lee, L. Juang, C. Wang et al., “Scaling characteristics in ozone concentration time series (OCTS),” Chemosphere, vol. 62, no. 6, pp. 934–946, 2006.
[10]
P. Bak, C. Tang, and K. Wiesenfeld, “Self-organized criticality: an explanation of the 1/f noise,” Physical Review Letters, vol. 59, no. 4, pp. 381–384, 1987.
[11]
K. Shi, C. Q. Liu, N. S. Ai, and X. H. Zhang, “Using three methods to investigate time-scaling properties in air pollution indexes time series,” Nonlinear Analysis: Real World Applications, vol. 9, no. 2, pp. 693–707, 2008.
[12]
K. Shi and C. Liu, “Self-organized criticality of air pollution,” Atmospheric Environment, vol. 43, no. 21, pp. 3301–3304, 2009.
[13]
D. Chang, Y. Song, and B. Liu, “Visibility trends in six megacities in China 1973–2007,” Atmospheric Research, vol. 94, no. 2, pp. 161–167, 2009.
[14]
C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, and A. L. Goldberger, “Mosaic organization of DNA nucleotides,” Physical Review E, vol. 49, no. 2, pp. 1685–1689, 1994.
[15]
B. D. Malamud and D. L. Turcotte, “Self-affine time series: measures of weak and strong persistence,” Journal of Statistical Planning and Inference, vol. 80, no. 1, pp. 173–196, 1999.
[16]
D. L. Turcotte and B. D. Malamud, “Landslides, forest fires, and earthquakes: examples of self-organized critical behavior,” Physica A, vol. 340, no. 4, pp. 580–589, 2004.
[17]
O. Peters and K. Christensen, “Rain viewed as relaxational events,” Journal of Hydrology, vol. 328, no. 1-2, pp. 46–55, 2006.