全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Characterization of Dispersive Fluxes in Mesoscale Models Using LES of Flow over an Array of Cubes

DOI: 10.1155/2013/898095

Full-Text   Cite this paper   Add to My Lib

Abstract:

Field studies have shown that local climate is strongly influenced by urban structures. This influences both energy consumption and the pedestrian comfort. It is thus useful to be able to simulate the urban environment to take these effects into account in building and urban design. But for computational reasons, conventional computational fluid dynamics (CFD) codes cannot be used directly on a grid fine enough to resolve all scales found in a city. For this, we use mesoscale models, variants of CFD codes in which the 3D conservation equations are solved on grids having a resolution of a few kilometers. At this resolution, the effects of subgrid scales need implicit representations. In other words, phenomena such as momentum and energy exchanges averaged over the mesoscale grid contribute necessary sources/sinks to the corresponding equations. Such spatial averaging results in additional terms called dispersive fluxes. Until now these fluxes have been ignored. To better understand these fluxes, we have conducted large eddy simulations (LESs) over an array of cubes for different inter-cube spacings. The study shows that these fluxes are as important as the turbulent fluxes and exhibit trends which are related to the eddy formations inside the canopies. 1. Introduction The large and continuous variety of scales present in the atmospheric flow over a city generates an intrinsic difficulty in the numerical treatment of the atmospheric conservation equations. From scaling considerations, the ratio between the smallest flow scale and the characteristic length scale is approximately proportional to ??[1], where is the Reynolds number. This means that a 3D representation of the planetary boundary layer resolving all scales will require about grid cells. This number is far from being handled conveniently nowadays or in the near future by any computing device. Therefore, the transport phenomena over larger distances (in our case covering a city and its bounding context) must be handled by mesoscale atmospheric codes with spatial resolutions of a few kilometers either by subgrid urban parameterizations [2, 3] or by a coupling with a higher resoltion microscale model [4, 5]. In the former approach, the mesoscale codes cannot “see” buildings explicitly. Yet buildings and urban land use significantly impact the micro- and mesoscale flow, altering the wind, temperature, and turbulence fields and radiation exchanges [6, 7]. Since mesoscale numerical models do not have the spatial resolution to directly simulate the fluid dynamics and thermodynamics in and around urban

References

[1]  H. Tennekes and J. L. Lumley, A First Course in Turbulence, MIT Press, 1972.
[2]  M. Tombrou, A. Dandou, C. Helmis et al., “Model evaluation of the atmospheric boundary layer and mixed-layer evolution,” Boundary-Layer Meteorology, vol. 124, no. 1, pp. 61–79, 2007.
[3]  A. Dandou, M. Tombrou, E. Akylas, N. Soulakellis, and E. Bossioli, “Development and evaluation of an urban parameterization scheme in the Penn State/NCAR Mesoscale Model (MM5),” Journal of Geophysical Research D, vol. 110, no. 10, pp. 1–14, 2005.
[4]  J. Ehrhard, I. A. Khatib, C. Winkler, R. Kunz, N. Moussiopoulos, and G. Ernst, “The microscale model MIMO: development and assessment,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 85, no. 2, pp. 163–176, 2000.
[5]  R. Kunz, I. A. Khatib, and N. Moussiopoulos, “Coupling of mesoscale and microscale models—an approach to simulate scale interaction,” Environmental Modelling and Software, vol. 15, no. 6-7, pp. 597–602, 2000.
[6]  R. P. Hosker, “Flow and diffusion near obstacles,” in Atmospheric Science and Power Production, pp. 241–326, 1984.
[7]  R. Bornstein, “Mean diurnal circulation and thermodynamic evolution of urban boundary layers,” in Modeling the Urban Boundary Layer, pp. 52–94, American Meteorological Society, Boston, Mass, USA, 1987.
[8]  H. Kusaka, H. Kondo, Y. Kikegawa, and F. Kimura, “A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models,” Boundary-Layer Meteorology, vol. 101, no. 3, pp. 329–358, 2001.
[9]  H. Kondo, Y. Genchi, Y. Kikegawa, Y. Ohashi, H. Yoshikado, and H. Komiyama, “Development of a Multi-Layer Urban Canopy Model for the analysis of energy consumption in a big city: structure of the Urban Canopy Model and its basic performance,” Boundary-Layer Meteorology, vol. 116, no. 3, pp. 395–421, 2005.
[10]  A. Martilli and J. L. Santiago, “CFD simulation of air flow over a regular array of cubes. Part II: analysis of spatial average properties,” Boundary-Layer Meteorology, vol. 122, no. 3, pp. 635–654, 2007.
[11]  J. L. Santiago, O. Coceal, A. Martilli, and S. E. Belcher, “Variation of the sectional drag coefficient of a group of buildings with packing density,” Boundary-Layer Meteorology, vol. 128, no. 3, pp. 445–457, 2008.
[12]  Y. Cheng, F. S. Lien, E. Yee, and R. Sinclair, “A comparison of large Eddy simulations with a standard k-ε Reynolds-averaged Navier-Stokes model for the prediction of a fully developed turbulent flow over a matrix of cubes,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 91, no. 11, pp. 1301–1328, 2003.
[13]  E. Meinders, Experimental study of heat transfer in turbulent flows over wall-mounted cubes [Ph.D. thesis], Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands, 1998.
[14]  E. Meinders and K. Hanjali?, “Vortex structure and heat transfer in turbulent flow over a wall-mounted matrix of cubes,” International Journal of Heat and Fluid Flow, vol. 20, no. 3, pp. 255–267, 1999.
[15]  TransAT, Transport Phenomena Analysis Tool, 2009, http://ascomp.ch/.
[16]  J. Smagorinsky, “General circulation experiments with the primitive equations,” Monthly Weather Review, vol. 91, no. 3, pp. 99–164, 1963.
[17]  M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, “A dynamic subgrid-scale eddy viscosity model,” Physics of Fluids A, vol. 3, no. 7, pp. 1760–1765, 1991.
[18]  D. Lilly, “A proposed modification of the Germano subgrid-scale closure method,” Physics of Fluids A, vol. 4, no. 3, pp. 633–635, 1992.
[19]  E. Driest, “On turbulent flow near a wall,” Journal of the Aeronautical Sciences, vol. 23, no. 11, pp. 1007–1011, 1956.
[20]  M. W. Rotach, “Turbulence close to a rough urban surface. Part I: reynolds stress,” Boundary-Layer Meteorology, vol. 65, no. 1-2, pp. 1–28, 1993.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133