全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Radiation and Heat Transfer in the Atmosphere: A Comprehensive Approach on a Molecular Basis

DOI: 10.1155/2013/503727

Full-Text   Cite this paper   Add to My Lib

Abstract:

We investigate the interaction of infrared active molecules in the atmosphere with their own thermal background radiation as well as with radiation from an external blackbody radiator. We show that the background radiation can be well understood only in terms of the spontaneous emission of the molecules. The radiation and heat transfer processes in the atmosphere are described by rate equations which are solved numerically for typical conditions as found in the troposphere and stratosphere, showing the conversion of heat to radiation and vice versa. Consideration of the interaction processes on a molecular scale allows to develop a comprehensive theoretical concept for the description of the radiation transfer in the atmosphere. A generalized form of the radiation transfer equation is presented, which covers both limiting cases of thin and dense atmospheres and allows a continuous transition from low to high densities, controlled by a density dependent parameter. Simulations of the up- and down-welling radiation and its interaction with the most prominent greenhouse gases water vapour, carbon dioxide, methane, and ozone in the atmosphere are presented. The radiative forcing at doubled CO2 concentration is found to be 30% smaller than the IPCC-value. 1. Introduction Radiation processes in the atmosphere play a major role in the energy and radiation balance of the earth-atmosphere system. Downwelling radiation causes heating of the earth’s surface due to direct sunlight absorption and also due to the back radiation from the atmosphere, which is the source term of the so heavily discussed atmospheric greenhouse or atmospheric heating effect. Upward radiation contributes to cooling and ensures that the absorbed energy from the sun and the terrestrial radiation can be rendered back to space and the earth’s temperature can be stabilized. For all these processes, particularly, the interaction of radiation with infrared active molecules is of importance. These molecules strongly absorb terrestrial radiation, emitted from the earth’s surface, and they can also be excited by some heat transfer in the atmosphere. The absorbed energy is reradiated uniformly into the full solid angle but to some degree also re-absorbed in the atmosphere, so that the radiation underlies a continuous interaction and modification process over the propagation distance. Although the basic relations for this interaction of radiation with molecules are already well known since the beginning of the previous century, up to now the correct application of these relations, their importance, and

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133