A woodpile Electromagnetic Bandgap (EBG) material has been designed, by using an in-house code that implements the Fourier Modal Method (FMM). A couple of alumina-woodpile samples have been fabricated. Several results have been collected for the transmission behaviour of the woodpile and of resonators with woodpile mirrors, in a shielded anechoic chamber, by using a vector network analyzer, in the 8–12?GHz range. These new experimental data highlight interesting properties of 3D EBG resonators and suggest possible innovative applications. Comparisons of the collected results with FMM show a satisfactory agreement. An application of the EBG resonator has been considered, for gain enhancement of a microstrip antenna: an increase of about 10?dB in the broadside gain has been measured; experimental data and numerical results obtained with the commercial software HFSS show a good agreement. A comparison is presented between EBG resonator antennas and two-dimensional uniform arrays. Finally, HFSS results are provided for EBG resonator antennas working at higher frequencies or with a more selective superstrate: a gain enhancement of more than 18?dB is achieved by such antennas. 1. Introduction Electromagnetic Bandgap (EBG) [1–3] structures, also called electromagnetic crystals, are subject to an increasing interest for their desirable properties that cannot be observed in natural materials. In this regard, they are classified as metamaterials [4]. The woodpile is an EBG that may present complete three-dimensional (3D) stop bands [5, 6]. It is a stack of dielectric rods with alternating orthogonal orientations and its main advantage, compared to other geometries promoting the existence of complete bandgaps, is that it can be quite easily fabricated even for high-frequency applications. A woodpile can be realized as a sequence of layers, deposited and patterned by lithographic techniques developed for the semiconductor electronics industry [7], or by the extrusion freeforming technique [8]. Woodpile crystals with a complete band-gap centred at 2.35? m [9] and 1.55? m [10] have been realized through silicon double inversion of polymer templates and direct laser writing. This kind of EBG has been employed to realize waveguides [11, 12], waveguide bends [11–14], power dividers [13, 14], and as substrate [15] or superstrate [16] for the improvement of planar antenna performances. The introduction of a defect in a crystal interrupts its periodicity and may cause the occurrence of a transmission peak in a stop band: for this reason, EBGs with defects are employed in
References
[1]
J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, NJ, USA, 2nd edition, 2008.
[2]
K. Yasumoto, Ed., Electromagnetic Theory and Applications for Photonic Crystals, CRC Press; Taylor & Francis, New York, NY, USA, 2005.
[3]
F. Yang and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, New York, NY, USA, 2009.
[4]
N. Engheta and R. W. Ziolkowski, Eds., Metamaterials: Physics and Engineering Explorations, Wiley-IEEE Press, Hoboken, NJ, USA, 2006.
[5]
K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Communications, vol. 89, no. 5, pp. 413–416, 1994.
[6]
H. S. S?züer and J. P. Dowling, “Photonic band calculations for woodpile structures,” Journal of Modern Optics, vol. 41, no. 2, pp. 231–239, 1994.
[7]
S. Y. Lin, J. G. Fleming, D. L. Hetherington et al., “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature, vol. 394, no. 6690, pp. 251–253, 1998.
[8]
Y. Lee, X. Lu, Y. Hao, S. Yang, J. R. G. Evans, and C. G. Parini, “Low-profile directive millimeter-wave antennas using free-formed three-dimensional (3-D) electromagnetic bandgap structures,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 10, pp. 2893–2903, 2009.
[9]
N. Tétreault, G. von Freymann, M. Deubel et al., “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Advanced Materials, vol. 18, no. 4, pp. 457–460, 2006.
[10]
I. Staude, M. Thiel, S. Essig et al., “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Optics Letters, vol. 35, no. 7, pp. 1094–1096, 2010.
[11]
A. Chutinan and S. Noda, “Highly confined waveguides and waveguide bends in three-dimensional photonic crystal,” Applied Physics Letters, vol. 75, no. 24, pp. 3739–3741, 1999.
[12]
A. Chutinan and S. Noda, “Design for waveguides in three-dimensional photonic crystals,” Japanese Journal of Applied Physics B, vol. 39, no. 4, pp. 2353–2356, 2000.
[13]
M. Bayindir, E. ?zbay, M. M. Sigalas, C. M. Soukoulis, R. Biswas, and K. M. Ho, “Guiding, bending and splitting of electromagnetic waves in highly confined photonic crystals,” Physical Review B, vol. 63, no. 8, Article ID 081107, 4 pages, 2001.
[14]
A. R. Weily, K. P. Esselle, T. S. Bird, and B. C. Sanders, “Experimental woodpile EBG waveguides, bends and power dividers at microwave frequencies,” IEE Electronics Letters, vol. 42, no. 1, pp. 32–33, 2006.
[15]
I. Ederra, R. Gonzalo, B. Martinez et al., “Modifications of the woodpile structure for the improvement of its performance as substrate for dipole antennas,” IET Microwaves, Antennas and Propagation, vol. 1, no. 1, pp. 226–233, 2007.
[16]
A. R. Weily, L. Horvath, K. P. Esselle, B. C. Sanders, and T. S. Bird, “A planar resonator antenna based on a woodpile EBG material,” IEEE Transactions on Antennas and Propagation, vol. 53, no. 1, pp. 216–223, 2005.
[17]
F. Frezza, L. Pajewski, and G. Schettini, “Numerical investigation on the filtering behavior of 2-D PBGs with multiple periodic defects,” IEEE Transactions on Nanotechnology, vol. 4, no. 6, pp. 730–739, 2005.
[18]
A. Coves, S. Marini, B. Gimeno, and V. Boria, “Full-wave analysis of periodic dielectric frequency-selective surfaces under plane wave excitation,” IEEE Transactions on Antennas & Propagation, vol. 60, no. 6, pp. 2760–2769, 2012.
[19]
E. ?zbay and B. Temelkuran, “Reflection properties and defect formation in photonic crystals,” Applied Physics Letters, vol. 69, no. 6, pp. 743–745, 1996.
[20]
H. Němec, L. Duvillaret, F. Quemeneur, and P. Ku?el, “Defect modes caused by twinning in one-dimensional photonic crystals,” Journal of the Optical Society of America B, vol. 21, no. 3, pp. 548–553, 2004.
[21]
H. Němec, P. Ku?el, F. Garet, and L. Duvillaret, “Time-domain terahertz study of defect formation in one-dimensional photonic crystals,” Applied Optics, vol. 43, no. 9, pp. 1965–1970, 2004.
[22]
F. Frezza, L. Pajewski, and G. Schettini, “Periodic defects in 2D-PBG materials: full-wave analysis and design,” IEEE Transactions on Nanotechnology, vol. 2, no. 3, pp. 126–134, 2003.
[23]
H.-Y. D. Yang, N. G. Alexopoulos, and E. Yablonovitch, “Photonic band-gap materials for high-gain printed circuit antennas,” IEEE Transactions on Antennas and Propagation, vol. 45, no. 1, pp. 185–187, 1997.
[24]
Y. J. Lee, J. Yeo, R. Mittra, and W. S. Park, “Application of Electromagnetic BandGap (EBG) superstrates with controllable defects for a class of patch antennas as spatial angular filters,” IEEE Transactions on Antennas & Propagation, vol. 53, no. 1, pp. 224–235, 2005.
[25]
M. Thevenot, J. Drouet, R. Chantalat, E. Arnaud, T. Monediere, and B. Jecko, “Improvements for the EBG resonator antenna technology,” in Proceedings of the 2nd European Conference on Antennas and Propagation (EuCAP '07), pp. 526–531, Edinburgh, UK, November 2007.
[26]
R. Biswas, E. ?zbay, B. Temelkuran, M. Bayindir, M. M. Sigalas, and K.-M. Ho, “Exceptionally directional sources with photonic-bandgap crystals,” Journal of the Optical Society of America B, vol. 18, no. 11, pp. 1684–1689, 2001.
[27]
E. ?zbay, B. Temelkuran, and M. Bayindir, “Microwave applications of photonic crystals,” Progress in Electromagnetic Research, vol. 41, pp. 185–209, 2003.
[28]
R. Sauleau, P. Coquet, T. Matsui, and J.-P. Daniel, “A new concept of focusing antennas using plane-parallel Fabry-Perot cavities with nonuniform mirrors,” IEEE Transactions on Antennas and Propagation, vol. 51, no. 11, pp. 3171–3175, 2003.
[29]
A. R. Weily, K. P. Esselle, B. C. Sanders, and T. S. Bird, “A woodpile EBG sectoral horn antenna,” in Proceedings of the IEEE Antennas and Propagation Society International Symposium, vol. 4B, pp. 323–326, Washington, DC, USA, July 2005.
[30]
A. R. Weily, K. P. Esselle, T. S. Bird, and B. C. Sanders, “Linear array of woodpile EBG sectoral horn antennas,” IEEE Transactions on Antennas and Propagation, vol. 54, no. 8, pp. 2263–2274, 2006.
[31]
F. Frezza, L. Pajewski, and G. Schettini, “Characterization and design of two-dimensional electromagnetic band-gap structures by use of a full-wave method for diffraction gratings,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 3, pp. 941–951, 2003.
[32]
F. Frezza, L. Pajewski, and G. Schettini, “Full-wave characterization of three-dimensional photonic band-gap structures,” IEEE Transactions on Nanotechnology, vol. 5, no. 5, pp. 545–553, 2006.
[33]
L. Pajewski and G. Schettini, “Three-dimensional electromagnetic band-gap structures: theory and applications,” in Advanced Techniques for Microwave Systems, G. Schettini, Ed., chapter 4, pp. 59–84, Research Signpost, Trivandrum, India, 2012.
[34]
F. Frezza, L. Pajewski, E. Piuzzi, C. Ponti, and G. Schettini, “Design and fabrication of a 3D-EBG superstrate for patch antennas,” in Proceedings of the 39th European Microwave Conference (EuMC '09), pp. 1496–1499, Rome, Italy, September-October 2009.
[35]
F. Frezza, L. Pajewski, E. Piuzzi, C. Ponti, and G. Schettini, “Analysis and experimental characterization of an alumina woodpile-covered planar antenna,” in Proceedings of the 40th European Microwave Conference (EuMC '10), pp. 200–203, Paris, France, September 2010.
[36]
L. Pajewski, L. Rinaldi, and G. Schettini, “Enhancement of directivity using 2D-electromagnetic crystals near the band-gap edge: a full-wave approach,” Progress in Electromagnetics Research, vol. 80, pp. 179–196, 2008.