全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cardiovascular Risk and Hippocampal Thickness in Alzheimer’s Disease

DOI: 10.1155/2013/108021

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cardiovascular risk factors influence onset and progression of Alzheimer’s disease. Among cognitively healthy people, changes in brain structure and function associated with high blood pressure, diabetes, or other vascular risks suggest differential regional susceptibility to neuronal damage. In patients with Alzheimer’s disease, hippocampal and medial temporal lobe atrophy indicate early neuronal loss preferentially in key areas for learning and memory. We wanted to investigate whether this regional cortical thinning would be modulated by cardiovascular risk factors. We utilized high-resolution magnetic resonance imaging and a cortical unfolding technique to determine the cortical thickness of medial temporal subregions in 30 patients with Alzheimer’s disease. Cardiovascular risk was assessed using a sex-specific multivariable risk score. Greater cardiovascular risk was associated with cortical thinning in the hippocampus CA2/3/dentate gyrus area but not other hippocampal and medial temporal subregions. APOE genotype, a family history of Alzheimer’s disease, and age did not influence cortical thickness. Alzheimer’s disease-related atrophy could mask the influence of genetic risk factors or age on regional cortical thickness in medial temporal lobe regions, whereas the impact of vascular risk factors remains detectable. This highlights the importance of cardiovascular disease prevention and treatment in patients with Alzheimer’s disease. 1. Introduction Patients with cardiovascular risk factors show an increased probability of developing cognitive decline and dementia [1, 2]. High blood pressure, diabetes, elevated cholesterol, and other vascular risks contribute to pathology resulting in cerebrovascular disease. However, studies have also demonstrated an association of these factors with Alzheimer’s disease [3, 4]. Alzheimer’s disease’s neuropathological hallmarks, beta-amyloid plaques and neurofibrillary tangles, and vascular pathology frequently cooccur in demented patients. It is not yet obvious whether and how pathological changes associated with vascular risks are closely related to Alzheimer’s disease etiology or whether they mainly mediate additional neuronal impairment ultimately contributing to the neurodegenerative disease’s onset or clinical course. There is faster cognitive deterioration in Alzheimer’s disease patients presenting with vascular risk factors [5], and, in contrast, treatment of such risks could slow this decline [6]. Damage of the blood-brain barrier with increased vascular permeability or high oxidative stress may be involved

References

[1]  P. B. Gorelick, A. Scuteri, S. E. Black et al., “Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association,” Stroke, vol. 42, no. 9, pp. 2672–2713, 2011.
[2]  J. Li, Y. J. Wang, M. Zhang et al., “Vascular risk factors promote conversion from mild cognitive impairment to Alzheimer disease,” Neurology, vol. 76, no. 17, pp. 1485–1491, 2011.
[3]  M. Kivipelto, E.-L. Helkala, M. P. Laakso et al., “Midlife vascular risk factors and Alzheimer's disease in later life: Longitudinal, population based study,” British Medical Journal, vol. 322, no. 7300, pp. 1447–1451, 2001.
[4]  J. A. Luchsinger, C. Reitz, L. S. Honig, M.-X. Tang, S. Shea, and R. Mayeux, “Aggregation of vascular risk factors and risk of incident Alzheimer disease,” Neurology, vol. 65, no. 4, pp. 545–551, 2005.
[5]  E. P. Helzner, J. A. Luchsinger, N. Scarmeas et al., “Contribution of vascular risk factors to the progression in Alzheimer disease,” Archives of Neurology, vol. 66, no. 3, pp. 343–348, 2009.
[6]  Y. Deschaintre, F. Richard, D. Leys, and F. Pasquier, “Treatment of vascular risk factors is associated with slower decline in Alzheimer disease,” Neurology, vol. 73, no. 9, pp. 674–680, 2009.
[7]  I. Skoog, R. N. Kalaria, and M. M. B. Breteler, “Vascular factors and Alzheimer disease,” Alzheimer Disease and Associated Disorders, vol. 13, supplement 3, pp. S106–S114, 1999.
[8]  H. Petrovitch, L. R. White, G. Izmirilian et al., “Midlife blood pressure and neuritic plaques, neurofibrillary tangles, and brain weight at death: the HAAS,” Neurobiology of Aging, vol. 21, no. 1, pp. 57–62, 2000.
[9]  F. Crawford, Z. Suo, C. Fang, and M. Mullan, “Characteristics of the in vitro vasoactivity of β-amyloid peptides,” Experimental Neurology, vol. 150, no. 1, pp. 159–168, 1998.
[10]  C. Diaz-Ruiz, J. Wang, H. Ksiezak-Reding, et al., “Role of hypertension in aggravating abeta neuropathology of ad type and tau-mediated motor impairment,” Cardiovascular Psychiatry and Neurology, vol. 2009, Article ID 107286, 9 pages, 2009.
[11]  W. Q. Qiu, D. M. Walsh, Z. Ye et al., “Insulin-degrading enzyme regulates extracellular levels of amyloid β- protein by degradation,” The Journal of Biological Chemistry, vol. 273, no. 49, pp. 32730–32738, 1998.
[12]  A. Solomon, M. Kivipelto, B. Wolozin, J. Zhou, and R. A. Whitmer, “Midlife serum cholesterol and increased risk of Alzheimer's and vascular dementia three decades later,” Dementia and Geriatric Cognitive Disorders, vol. 28, no. 1, pp. 75–80, 2009.
[13]  E. C. Leritz, D. H. Salat, V. J. Williams et al., “Thickness of the human cerebral cortex is associated with metrics of cerebrovascular health in a normative sample of community dwelling older adults,” NeuroImage, vol. 54, no. 4, pp. 2659–2671, 2011.
[14]  H. Braak, I. Alafuzoff, T. Arzberger, H. Kretzschmar, and K. Tredici, “Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry,” Acta Neuropathologica, vol. 112, no. 4, pp. 389–404, 2006.
[15]  A. C. Burggren, M. M. Zeineh, A. D. Ekstrom et al., “Reduced cortical thickness in hippocampal subregions among cognitively normal apolipoprotein E e4 carriers,” NeuroImage, vol. 41, no. 4, pp. 1177–1183, 2008.
[16]  M. Donix, A. C. Burggren, N. A. Suthana et al., “Family history of Alzheimer's disease and hippocampal structure in healthy people,” American Journal of Psychiatry, vol. 167, no. 11, pp. 1399–1406, 2010.
[17]  N. Raz, U. Lindenberger, K. M. Rodrigue et al., “Regional brain changes in aging healthy adults: general trends, individual differences and modifiers,” Cerebral Cortex, vol. 15, no. 11, pp. 1676–1689, 2005.
[18]  T. Gattringer, C. Enzinger, S. Ropele et al., “Vascular risk factors, white matter hyperintensities and hippocampal volume in normal elderly individuals,” Dementia and Geriatric Cognitive Disorders, vol. 33, no. 1, pp. 29–34, 2012.
[19]  R. Schmidt-Kastner and T. F. Freund, “Selective vulnerability of the hippocampus in brain ischemia,” Neuroscience, vol. 40, no. 3, pp. 599–636, 1991.
[20]  E. Schwartz, B. Wicinski, J. Schmeidler, V. Haroutunian, and P. R. Hof, “CardIovascular risk factors affect hippocampal microvasculature in early ad,” Translational Neuroscience, vol. 1, no. 4, pp. 292–299, 2010.
[21]  M. M. Zeineh, S. A. Engel, P. M. Thompson, and S. Y. Bookheimer, “Dynamics of the hippocampus during encoding and retrieval of face-name pairs,” Science, vol. 299, no. 5606, pp. 577–580, 2003.
[22]  G. McKhann, D. Drachman, and M. Folstein, “Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease,” Neurology, vol. 34, no. 7, pp. 939–944, 1984.
[23]  R. B. D'Agostino Sr., R. S. Vasan, M. J. Pencina et al., “General cardiovascular risk profile for use in primary care: the Framingham heart study,” Circulation, vol. 117, no. 6, pp. 743–753, 2008.
[24]  D. G. Amaral and R. Insausti, “Hippocampal formation,” in The Human Nervous System, G. Praxinos, Ed., pp. 711–755, Academic Press, San Diego, Calif, USA, 1990.
[25]  H. M. Duvernoy, The Human Hippocampus: Functional Anatomy, Vascularization, and Serial Sections with MRI, Springer, Berlin, Germany, 1998.
[26]  E. Westman, C. Aguilar, J. S. Muehlboeck, et al., “Regional magnetic resonance imaging measures for multivariate analysis in Alzheimer's disease and mild cognitive impairment,” Brain Topography, vol. 26, no. 1, pp. 9–23, 2013.
[27]  S. G. Mueller, N. Schuff, S. Raptentsetsang, J. Elman, and M. W. Weiner, “Selective effect of Apo e4 on CA3 and dentate in normal aging and Alzheimer's disease using high resolution MRI at 4?T,” NeuroImage, vol. 42, no. 1, pp. 42–48, 2008.
[28]  Y. Liu, T. Paajanen, E. Westman et al., “Effect of APOE ε4 allele on cortical thicknesses and volumes: the addNeuroMed study,” Journal of Alzheimer's Disease, vol. 21, no. 3, pp. 947–966, 2010.
[29]  S. L. Tyas, J. C. Salazar, D. A. Snowdon et al., “Transitions to mild cognitive impairments, dementia, and death: findings from the Nun study,” American Journal of Epidemiology, vol. 165, no. 11, pp. 1231–1238, 2007.
[30]  H. Sakurai, H. Hanyu, T. Sato et al., “Vascular risk factors and progression in Alzheimer's disease,” Geriatrics and Gerontology International, vol. 11, no. 2, pp. 211–214, 2011.
[31]  J. J. Monsuez, A. Gesquiere-Dando, and S. Rivera, “Cardiovascular prevention of cognitive decline,” Cardiology Research and Practice, vol. 2011, Article ID 250970, 7 pages, 2011.
[32]  F. Forette, M. Seux, J. A. Staessen et al., “The prevention of dementia with antihypertensive treatment: new evidence from the Systolic Hypertension in Europe (Syst-Eur) study,” Archives of Internal Medicine, vol. 162, no. 18, pp. 2046–2052, 2002.
[33]  N. Scarmeas, J. A. Luchsinger, N. Schupf et al., “Physical activity, diet, and risk of Alzheimer disease,” Journal of the American Medical Association, vol. 302, no. 6, pp. 627–637, 2009.
[34]  A. Bakker, C. B. Kirwan, M. Miller, and C. E. L. Stark, “Pattern separation in the human hippocampal CA3 and dentate gyrus,” Science, vol. 319, no. 5870, pp. 1640–1642, 2008.
[35]  M. A. Yassa, S. M. Stark, A. Bakker, M. S. Albert, M. Gallagher, and C. E. L. Stark, “High-resolution structural and functional MRI of hippocampal CA3 and dentate gyrus in patients with amnestic Mild Cognitive Impairment,” NeuroImage, vol. 51, no. 3, pp. 1242–1252, 2010.
[36]  L. Crews, A. Adame, C. Patrick et al., “Increased BMP6 levels in the brains of Alzheimer's disease patients and APP transgenic mice are accompanied by impaired neurogenesis,” The Journal of Neuroscience, vol. 30, no. 37, pp. 12252–12262, 2010.
[37]  P. M. Pimentel-Coelho and S. Rivest, “The early contribution of cerebrovascular factors to the pathogenesis of Alzheimer's disease,” European Journal of Neuroscience, vol. 35, no. 12, pp. 1917–1937, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133