Alzheimer’s disease (AD) is one of the most prevalent severe neurological disorders afflicting our aged population. Cognitive decline, a major symptom exhibited by AD patients, is associated with neuritic dystrophy, a degenerative growth state of neurites. The molecular mechanisms governing neuritic dystrophy remain unclear. Mounting evidence indicates that the AD-causative agent, β-amyloid protein (Aβ), induces neuritic dystrophy. Indeed, neuritic dystrophy is commonly found decorating Aβ-rich amyloid plaques (APs) in the AD brain. Furthermore, disruption and degeneration of the neuronal microtubule system in neurons forming dystrophic neurites may occur as a consequence of Aβ-mediated downstream signaling. This review defines potential molecular pathways, which may be modulated subsequent to Aβ-dependent interactions with the neuronal membrane as a consequence of increasing amyloid burden in the brain. 1. Introduction Several neurodegenerative disorders share common characteristics including aggregation of misfolded mutant proteins in neurons leading to their deafferentation or loss with resultant structural or functional deficits in specific regions of the central nervous system (CNS) [1]. The most prevalent symptoms of age-related neurodegenerative disease are cognitive decline and movement disorders, along with brainstem and cerebellar signs. Such age-dependent disorders include Alzheimer’s disease (AD), Huntington’s disease (HD), Parkinson’s disease (PD), and Spinal Cerebellar Ataxias (SCAs) [1]. There exists complexity in identifying fundamental molecular mechanisms precipitating neurodegeneration in these age-related brain diseases. However, common molecular signalling pathways have been defined in the specific neuronal populations associated with pathology [2]. Although the initiators of neuronal dysfunction may differ for each neurodegenerative disorder, there may be common molecular pathways which when being dysregulated, drive and exacerbate neurodegeneration. For example, the degeneration seen in AD is a result of amyloid plaques and phosphorylated tau deposition in the cerebral cortex and specific subcortical regions, leading to degeneration in the temporal lobe and parietal lobe, along with parts of the frontal cortex and cingulate gyrus [2]. AD also displays dysregulation in kinase and phosphatase mechanisms along with microtubule motor proteins during the degeneration phase [3, 4]. Therefore, a major question that remains unresolved is whether the dysregulation in specific kinases/phosphatases and vesicular transport mechanisms are
References
[1]
H. Kozlowski, M. Luczkowski, M. Remelli, and D. Valensin, “Copper, zinc and iron in neurodegenerative diseases (Alzheimer's, Parkinson's and prion diseases),” Coordination Chemistry Reviews, vol. 256, no. 19-20, pp. 2129–2141, 2012.
[2]
P. Kumar, K. Pradhan, R. Karunya, R. K. Ambasta, and H. W. Querfurth, “Cross-functional E3 ligases Parkin and C-terminus Hsp70-interacting protein in neurodegenerative disorders,” Journal of Neurochemistry, vol. 120, no. 3, pp. 350–370, 2012.
[3]
R. Liu and J. Wang, “Protein phosphatase 2A in Alzheimer's disease,” Pathophysiology, vol. 16, no. 4, pp. 273–277, 2009.
[4]
L. Crews, E. Rockenstein, and E. Masliah, “APP transgenic modeling of Alzheimer's disease: mechanisms of neurodegeneration and aberrant neurogenesis,” Brain Structure and Function, vol. 214, no. 2-3, pp. 111–126, 2010.
[5]
S. Przedborski, M. Vila, and V. Jackson-Lewis, “Neurodegeneration: what is it and where are we?” Journal of Clinical Investigation, vol. 111, no. 1, pp. 3–10, 2003.
[6]
K. C. Chan, K. X. Cai, H. X. Su, et al., “Early detection of neurodegeneration in brain ischemia by manganese-enhanced MRI,” in Proceedings of the IEEE Conference on Engineering in Medicine and Biology Society, pp. 3884–3887, 2008.
[7]
D. Selkoe, E. Mandelkow, and D. Holtzman, “Deciphering Alzheimer disease,” Cold Spring Harbor Laboratory Press, vol. 2, no. 1, Article ID a011460, 2012.
[8]
M. Morimatsu, S. Hirai, A. Muramatsu, and M. Yoshikawa, “Senile degenerative brain lesions and dementia,” Journal of the American Geriatrics Society, vol. 23, no. 9, pp. 390–406, 1975.
[9]
S. S. Sisodia, E. H. Koo, K. Beyreuther, A. Unterbeck, and D. L. Price, “Evidence that β-amyloid protein in Alzheimer's disease is not derived by normal processing,” Science, vol. 248, no. 4954, pp. 492–495, 1990.
[10]
D. A. Kirschner, C. Abraham, and D. J. Selkoe, “X-ray diffraction from intraneuronal paired helical filaments and extraneuronal amyloid fibers in Alzheimer disease indicates cross-β conformation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 2, pp. 503–507, 1986.
[11]
F. S. Esch, P. S. Keim, E. C. Beattie et al., “Cleavage of amyloid β peptide during constitutive processing of its precursor,” Science, vol. 248, no. 4959, pp. 1122–1124, 1990.
[12]
T. G. Williamson, S. S. Mok, A. Henry et al., “Secreted glypican binds to the amyloid precursor protein of Alzheimer's disease (APP) and inhibits APP-induced neurite outgrowth,” Journal of Biological Chemistry, vol. 271, no. 49, pp. 31215–31221, 1996.
[13]
D. H. Small, T. Williamson, G. Reed et al., “The role of heparan sulfate proteoglycans in the pathogenesis of Alzheimer's disease,” Annals of the New York Academy of Sciences, vol. 777, pp. 316–321, 1996.
[14]
D. H. Small, V. Nurcombe, G. Reed et al., “A heparin-binding domain in the amyloid protein precursor of Alzheimer's disease is involved in the regulation of neurite outgrowth,” Journal of Neuroscience, vol. 14, no. 4, pp. 2117–2127, 1994.
[15]
W. Q. Wei, A. Ferreira, C. Miller, E. H. Koo, and D. J. Selkoe, “Cell-surface β-amyloid precursor protein stimulates neurite outgrowth of hippocampal neurons in an isoform-dependent manner,” Journal of Neuroscience, vol. 15, no. 3, pp. 2157–2167, 1995.
[16]
I. Ohsawa, Y. Hirose, M. Ishiguro, Y. Imai, S. Ishiura, and S. Kohsaka, “Expression, purification, and neurotrophic activity of amyloid precursor protein-secreted forms produced by yeast,” Biochemical and Biophysical Research Communications, vol. 213, no. 1, pp. 52–58, 1995.
[17]
E. A. Milward, R. Papadopoulos, S. J. Fuller et al., “The amyloid protein precursor of Alzheimer's disease is a mediator of the effects of nerve growth factor on neurite outgrowth,” Neuron, vol. 9, no. 1, pp. 129–137, 1992.
[18]
L. W. Jin, H. Ninomiya, J. Roch et al., “Peptides containing the RERMS sequence of amyloid β/A4 protein precursor bind cell surface and promote neurite extension,” Journal of Neuroscience, vol. 14, no. 9, pp. 5461–5470, 1994.
[19]
K. C. Breen, M. Bruce, and B. H. Anderton, “Beta amyloid precursor protein mediates neuronal cell-cell and cell-surface adhesion,” Journal of Neuroscience Research, vol. 28, no. 1, pp. 90–100, 1991.
[20]
B. Allinquant, P. Hantraye, P. Mailleux, K. Moya, C. Bouillot, and A. Prochiantz, “Downregulation of amyloid precursor protein inhibits neurite outgrowth in vitro,” Journal of Cell Biology, vol. 128, no. 5, pp. 919–927, 1995.
[21]
T. V. V. Nguyen, V. Galvan, W. Huang et al., “Signal transduction in Alzheimer disease: p21-activated kinase signaling requires C-terminal cleavage of APP at Asp664,” Journal of Neurochemistry, vol. 104, no. 4, pp. 1065–1080, 2008.
[22]
S. Sinha and I. Lieberburg, “Cellular mechanisms of β-amyloid production and secretion,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 20, pp. 11049–11053, 1999.
[23]
J. P. Anderson, Y. Chen, K. S. Kim, and N. K. Robakis, “An alternative secretase cleavage produces soluble Alzheimer amyloid precursor protein containing a potentially amyloidogenic sequence,” Journal of Neurochemistry, vol. 59, no. 6, pp. 2328–2331, 1992.
[24]
E. M. Snyder, Y. Nong, C. G. Almeida et al., “Regulation of NMDA receptor trafficking by amyloid-β,” Nature Neuroscience, vol. 8, no. 8, pp. 1051–1058, 2005.
[25]
L. Mucke, E. Masliah, G. Yu et al., “High-level neuronal expression of Aβ(1-42) in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation,” Journal of Neuroscience, vol. 20, no. 11, pp. 4050–4058, 2000.
[26]
V. Muresan, N. H. Varvel, B. T. Lamb, and Z. Muresan, “The cleavage products of amyloid-β precursor protein are sorted to distinct carrier vesicles that are independently transported within neurites,” Journal of Neuroscience, vol. 29, no. 11, pp. 3565–3578, 2009.
[27]
S. Ahlgren, G. L. Li, and Y. Olsson, “Accumulation of β-amyloid precursor protein and ubiquitin in axons after spinal cord trauma in humans: immunohistochemical observations on autopsy material,” Acta Neuropathologica, vol. 92, no. 1, pp. 48–55, 1996.
[28]
P. Cras, M. Kawai, D. Lowery, P. Gonzalez-DeWhitt, B. Greenberg, and G. Perry, “Senile plaque neurites in Alzheimer disease accumulate amyloid precursor protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 17, pp. 7552–7556, 1991.
[29]
S. S. Sisodia and R. E. Tanzi, Alzheimer's Disease. Advances in Genetics and Cellular Biology, Springer Science+Business Media LLC, New York, NY, USA, 2007.
[30]
B. Chakravarthy, C. Gaudet, M. Ménard et al., “Amyloid-β peptides stimulate the expression of the p75NTR neurotrophin receptor in SHSY5Y human neuroblastoma cells and AD transgenic mice,” Journal of Alzheimer's Disease, vol. 19, no. 3, pp. 915–925, 2010.
[31]
K. Hensley, K. Venkova, A. Christov, W. Gunning, and J. Park, “Collapsin response mediator protein-2: an emerging pathologic feature and therapeutic target for neurodisease indications,” Molecular Neurobiology, vol. 43, no. 3, pp. 180–191, 2011.
[32]
J. E. Donahue, S. L. Flaherty, C. E. Johanson et al., “RAGE, LRP-1, and amyloid-beta protein in Alzheimer's disease,” Acta Neuropathologica, vol. 112, no. 4, pp. 405–415, 2006.
[33]
G. M. Shankar, S. Li, T. H. Mehta et al., “Amyloid-β protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory,” Nature Medicine, vol. 14, no. 8, pp. 837–842, 2008.
[34]
A. Chiarini, I. D. Pra, J. F. Whitfield, and U. Armato, “The killing of neurons by β-amyloid peptides, prions, and pro-inflammatory cytokines,” Italian Journal of Anatomy and Embryology, vol. 111, no. 4, pp. 221–246, 2006.
[35]
C. Behl, J. B. Davis, R. Lesley, and D. Schubert, “Hydrogen peroxide mediates amyloid β protein toxicity,” Cell, vol. 77, no. 6, pp. 817–827, 1994.
[36]
Z. Muresan and V. Muresan, “Neuritic deposits of amyloid-β peptide in a subpopulation of central nervous system-derived neuronal cells,” Molecular and Cellular Biology, vol. 26, no. 13, pp. 4982–4997, 2006.
[37]
C. R. Jack Jr., D. S. Knopman, W. J. Jagust et al., “Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade,” The Lancet Neurology, vol. 9, no. 1, pp. 119–128, 2010.
[38]
E. Rodrigues, A. Weissmiller, and L. Golstein, “Enhanced β-secretase processing alters APP axonal transport and leads to axonal defects,” Human Molecular Genetics, vol. 21, no. 21, pp. 4587–4601, 2012.
[39]
D. P. Devanand, N. Schupf, Y. Stern et al., “Plasma A β and PET PiB binding are inversely related in mild cognitive impairment,” Neurology, vol. 77, no. 2, pp. 125–131, 2011.
[40]
J. W. Um, H. B. Nygaard, J. K. Heiss, et al., “Alzheimer amyloid-β oligomer bound to postsynaptic prion protein activates Fyn to impair neurons,” Nature Neuroscience, vol. 15, no. 9, pp. 1227–1235, 2012.
[41]
N. Hirokawa, Y. Shiomura, and S. Okabe, “Tau proteins: the molecular structure and mode of binding on microtubules,” Journal of Cell Biology, vol. 107, no. 4, pp. 1449–1459, 1988.
[42]
C. W. Scott, A. B. Klika, M. M. S. Lo, T. E. Norris, and C. B. Caputo, “Tau protein induces bundling of microtubules in vitro: comparison of different tau isoforms and a tau protein fragment,” Journal of Neuroscience Research, vol. 33, no. 1, pp. 19–29, 1992.
[43]
I. T. Whiteman, O. L. Gervasio, K. M. Cullen et al., “Activated actin-depolymerizing factor/cofilin sequesters phosphorylated microtubule-associated protein during the assembly of Alzheimer-like neuritic cytoskeletal striations,” Journal of Neuroscience, vol. 29, no. 41, pp. 12994–13005, 2009.
[44]
L. Li, Z. Liu, J. Liu, et al., “Ginsenoside Rd attenuates beta-amyloid-induced tau phosphorylation by altering the functional balance of glycogen synthase kinase 3beta and protein phosphatase 2A,” Neurobiology of Disease, vol. 54, pp. 320–328, 2013.
[45]
T. Arendt, M. Holzer, R. Fruth, M. K. Brückner, and U. G?rtner, “Phosphorylation of tau, aβ-formation, and apoptosis after in vivo inhibition of PP-1 and PP-2A,” Neurobiology of Aging, vol. 19, no. 1, pp. 3–13, 1998.
[46]
L. M. Ittner, T. Fath, Y. D. Ke et al., “Parkinsonism and impaired axonal transport in a mouse model of frontotemporal dementia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 41, pp. 15997–16002, 2008.
[47]
R. D. Terry, “The cytoskeleton in Alzheimer disease,” Journal of Neural Transmission, no. 53, pp. 141–145, 1998.
[48]
M. E. Velasco, M. A. Smith, S. L. Siedlak, A. Nunomura, and G. Perry, “Striation is the characteristic neuritic abnormality in Alzheimer disease,” Brain Research, vol. 813, no. 2, pp. 329–333, 1998.
[49]
L. Martin, X. Latypova, and F. Terro, “Post-translational modifications of tau protein: implications for Alzheimer's disease,” Neurochemistry International, vol. 58, no. 4, pp. 458–471, 2011.
[50]
B. Bulic, M. Pickhardt, E. Mandelkow, and E. Mandelkow, “Tau protein and tau aggregation inhibitors,” Neuropharmacology, vol. 59, no. 4-5, pp. 276–289, 2010.
[51]
S. B. Shelton and G. V. W. Johnson, “Cyclin-dependent kinase-5 in neurodegeneration,” Journal of Neurochemistry, vol. 88, no. 6, pp. 1313–1326, 2004.
[52]
K. Iqbal, A. D. C. Alonso, and I. Grundke-Iqbal, “Cytosolic abnormally hyperphosphorylated tau but not paired helical filaments sequester normal MAPs and inhibit microtubule assembly,” Journal of Alzheimer's Disease, vol. 14, no. 4, pp. 365–370, 2008.
[53]
R. B. Maccioni, G. Farías, I. Morales, and L. Navarrete, “The revitalized tau hypothesis on Alzheimer's disease,” Archives of Medical Research, vol. 41, no. 3, pp. 226–231, 2010.
[54]
G. Amadoro, V. Corsetti, M. T. Ciotti et al., “Endogenous Aβ causes cell death via early tau hyperphosphorylation,” Neurobiology of Aging, vol. 32, no. 6, pp. 969–990, 2011.
[55]
M. Lavados, M. Guillón, M. C. Mujica, L. E. Rojo, P. Fuentes, and R. B. Maccioni, “Mild cognitive impairment and Alzheimer patients display different levels of redox-active CSF iron,” Journal of Alzheimer's Disease, vol. 13, no. 2, pp. 225–232, 2008.
[56]
C. A. Zambrano, J. T. Ega?a, M. T. Nú?ez, R. B. Maccioni, and C. González-Billault, “Oxidative stress promotes τ dephosphorylation in neuronal cells: the roles of cdk5 and PP1,” Free Radical Biology and Medicine, vol. 36, no. 11, pp. 1393–1402, 2004.
[57]
K. F. Neumann, L. Rojo, L. P. Navarrete, G. Farías, P. Reyes, and R. B. Maccioni, “Insulin resistance and Alzheimer's disease: molecular links amp; clinical implications,” Current Alzheimer Research, vol. 5, no. 5, pp. 438–447, 2008.
[58]
E. D. Roberson, K. Scearce-Levie, J. J. Palop et al., “Reducing endogenous tau ameliorates amyloid β-induced deficits in an Alzheimer's disease mouse model,” Science, vol. 316, no. 5825, pp. 750–754, 2007.
[59]
O. Nakagawa, K. Fujisawa, T. Ishizaki, Y. Saito, K. Nakao, and S. Narumiya, “ROCK-I and ROCK-II, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice,” FEBS Letters, vol. 392, no. 2, pp. 189–193, 1996.
[60]
R. Sordella, W. Jiang, G. Chen, M. Curto, and J. Settleman, “Modulation of Rho GTPase signaling regulates a switch between adipogenesis and myogenesis,” Cell, vol. 113, no. 2, pp. 147–158, 2003.
[61]
L. Zhao, Q. Ma, F. Calon et al., “Role of p21-activated kinase pathway defects in the cognitive deficits of Alzheimer disease,” Nature Neuroscience, vol. 9, no. 2, pp. 234–242, 2006.
[62]
M. Gorovoy, J. Niu, O. Bernard et al., “LIM kinase 1 coordinates microtubule stability and actin polymerization in human endothelial cells,” Journal of Biological Chemistry, vol. 280, no. 28, pp. 26533–26542, 2005.
[63]
R. H. Daniels, P. S. Hall, and G. M. Bokoch, “Membrane targeting of p21-activated kinase 1 (PAK1) induces neurite outgrowth from PC12 cells,” EMBO Journal, vol. 17, no. 3, pp. 754–764, 1998.
[64]
Z. M. Goeckeler, R. A. Masaracchia, Q. Zeng, T. Chew, P. Gallagher, and R. B. Wysolmerski, “Phosphorylation of myosin light chain kinase by p21-activated kinase PAK2,” Journal of Biological Chemistry, vol. 275, no. 24, pp. 18366–18374, 2000.
[65]
T. Chew, R. A. Masaracchia, Z. M. Goeckeler, and R. B. Wysolmerski, “Phosphorylation of non-muscle myosin II regulatory light chain by p21-activated kinase (γ-PAK),” Journal of Muscle Research and Cell Motility, vol. 19, no. 8, pp. 839–854, 1998.
[66]
G. Gallo, “Myosin II activity is required for severing-induced axon retraction in vitro,” Experimental Neurology, vol. 189, no. 1, pp. 112–121, 2004.
[67]
N. Arimura, N. Inagaki, K. Chihara et al., “Phosphorylation of collapsin response mediator protein-2 by Rho-kinase: evidence for two separate signaling pathways for growth cone collapse,” Journal of Biological Chemistry, vol. 275, no. 31, pp. 23973–23980, 2000.
[68]
B. Nieder?st, T. Oertle, J. Fritsche, R. A. McKinney, and C. E. Bandtlow, “Nogo-A and myelin-associated glycoprotein mediate neurite growth inhibition by antagonistic regulation of RhoA and Rac1,” Journal of Neuroscience, vol. 22, no. 23, pp. 10368–10376, 2002.
[69]
L. Heredia, P. Helguera, S. De Olmos et al., “Phosphorylation of actin-depolymerizing factor/cofilin by LIM-kinase mediates amyloid β-induced degeneration: a potential mechanism of neuronal dystrophy in Alzheimer's disease,” Journal of Neuroscience, vol. 26, no. 24, pp. 6533–6542, 2006.
[70]
K. H. Gylys, J. A. Fein, F. Yang, D. J. Wiley, C. A. Miller, and G. M. Cole, “Snaptic changes in alzheimer's disease: increased amyloid-β and gliosis in surviving terminals is accompanied by decreased PSD-95 fluorescence,” American Journal of Pathology, vol. 165, no. 5, pp. 1809–1817, 2004.
[71]
Q. L. Ma, F. Yang, F. Calon et al., “p21-activated kinase-aberrant activation and translocation in Alzheimer disease pathogenesis,” Journal of Biological Chemistry, vol. 283, no. 20, pp. 14132–14143, 2008.
[72]
A. Salminen, T. Suuronen, and K. Kaarniranta, “ROCK, PAK, and Toll of synapses in Alzheimer's disease,” Biochemical and Biophysical Research Communications, vol. 371, no. 4, pp. 587–590, 2008.
[73]
S. Leuchtenberger, M. P. Kummer, T. Kukar et al., “Inhibitors of Rho-kinase modulate amyloid-β (Aβ) secretion but lack selectivity for Aβ42,” Journal of Neurochemistry, vol. 96, no. 2, pp. 355–365, 2006.
[74]
M. A. Del Pozo, N. B. Alderson, W. B. Kiosses, H. Chiang, R. G. W. Anderson, and M. A. Schwartz, “Integrins regulate rac targeting by internalization of membrane domains,” Science, vol. 303, no. 5659, pp. 839–842, 2004.
[75]
C. Guirland, S. Suzuki, M. Kojima, B. Lu, and J. Q. Zheng, “Lipid rafts mediate chemotropic guidance of nerve growth cones,” Neuron, vol. 42, no. 1, pp. 51–62, 2004.
[76]
A. R. Cole, W. Noble, L. V. Aalten et al., “Collapsin response mediator protein-2 hyperphosphorylation is an early event in Alzheimer's disease progression,” Journal of Neurochemistry, vol. 103, no. 3, pp. 1132–1144, 2007.
[77]
Y. Uchida, T. Ohshima, Y. Sasaki et al., “Semaphorin3A signalling is mediated via sequential Cdk5 and GSK3β phosphorylation of CRMP2: implication of common phosphorylating mechanism underlying axon guidance and Alzheimer's disease,” Genes to Cells, vol. 10, no. 2, pp. 165–179, 2005.
[78]
S. Petratos, Q. Li, A. J. George et al., “The β-amyloid protein of Alzheimer's disease increases neuronal CRMP-2 phosphorylation by a Rho-GTP mechanism,” Brain, vol. 131, no. 1, pp. 90–108, 2008.
[79]
C. J. Proctor and D. A. Gray, “GSK3 and p53-is there a link in Alzheimer's disease?” Molecular Neurodegeneration, vol. 5, no. 1, p. 7, 2010.
[80]
W.-Y. Kim and W. D. Snider, “Functions of GSK-3 signaling in development of the nervous system,” Frontiers in Molecular Neuroscience, vol. 4, p. 44, 2011.
[81]
A. R. Cole, A. Knebel, N. A. Morrice et al., “GSK-3 phosphorylation of the Alzheimer epitope within collapsin response mediator proteins regulates axon elongation in primary neurons,” Journal of Biological Chemistry, vol. 279, no. 48, pp. 50176–50180, 2004.
[82]
S. Frame and P. Cohen, “GSK3 takes centre stage more than 20 years after its discovery,” Biochemical Journal, vol. 359, no. 1, pp. 1–16, 2001.
[83]
P. Salcedo-Tello, A. Ortiz-Matamoros, and C. Arias, “GSK3 function in the brain during development, neuronal plasticity, and neurodegeneration,” International Journal of Alzheimer's Disease, vol. 2011, Article ID 189728, 12 pages, 2011.
[84]
W. Qian, J. Shi, X. Yin et al., “PP2A regulates tau phosphorylation directly and also indirectly via activating GSK-3β,” Journal of Alzheimer's Disease, vol. 19, no. 4, pp. 1221–1229, 2010.
[85]
K. A. Ryan and S. W. Pimplikar, “Activation of GSK-3 and phosphorylation of CRMP2 in transgenic mice expressing APP intracellular domain,” Journal of Cell Biology, vol. 171, no. 2, pp. 327–335, 2005.
[86]
A. R. Cole, M. P. M. Soutar, M. Rembutsu et al., “Relative resistance of Cdk5-phosphorylated CRMP2 to dephosphorylation,” Journal of Biological Chemistry, vol. 283, no. 26, pp. 18227–18237, 2008.
[87]
D. Piedrahita, I. Hernández, A. López-Tobón et al., “Silencing of CDK5 reduces neurofibrillary tangles in transgenic Alzheimer's mice,” Journal of Neuroscience, vol. 30, no. 42, pp. 13966–13976, 2010.
[88]
D. W. Peterson, D. M. Ando, D. A. Taketa, H. Zhou, F. W. Dahlquist, and J. Lew, “No difference in kinetics of tau or histone phosphorylation by CDK5/p25 versus CDK5/p35 in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 7, pp. 2884–2889, 2010.
[89]
T. Chae, Y. T. Kwon, R. Bronson, P. Dikkes, L. En, and L. Tsai, “Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality,” Neuron, vol. 18, no. 1, pp. 29–42, 1997.
[90]
T. Ohshima, J. M. Ward, C. Huh et al., “Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 20, pp. 11173–11178, 1996.
[91]
Z. H. Cheung and N. Y. Ip, “Cdk5: a multifaceted kinase in neurodegenerative diseases,” Trends in Cell Biology, vol. 22, no. 3, pp. 169–175, 2012.
[92]
Y. Wen, E. Planel, M. Herman et al., “Interplay between cyclin-dependent kinase 5 and glycogen synthase kinase 3β mediated by neuregulin signaling leads to differential effects on tau phosphorylation and amyloid precursor protein processing,” Journal of Neuroscience, vol. 28, no. 10, pp. 2624–2632, 2008.
[93]
J. J. Hill, D. A. Callaghan, W. Ding, J. F. Kelly, and B. R. Chakravarthy, “Identification of okadaic acid-induced phosphorylation events by a mass spectrometry approach,” Biochemical and Biophysical Research Communications, vol. 342, no. 3, pp. 791–799, 2006.
[94]
S. P. Braithwaite, J. B. Stock, P. J. Lombroso, and A. C. Nairn, “Protein phosphatases and Alzheimer's Disease,” Progress in Molecular Biology and Translational Science, vol. 106, pp. 343–379, 2012.
[95]
L. Martin, X. Latypova, C. M. Wilson, A. Magnaudeix, M. L. Perrin, and F. Terro, “Tau protein phosphatases in Alzheimer's disease: the leading role of PP2A,” Ageing Research Reviews, vol. 12, no. 1, pp. 39–49, 2013.
[96]
F. Liu, I. Grundke-Iqbal, K. Iqbal, and C. Gong, “Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation,” European Journal of Neuroscience, vol. 22, no. 8, pp. 1942–1950, 2005.
[97]
Y. Xu, Y. Chen, P. Zhang, P. D. Jeffrey, and Y. Shi, “Structure of a protein phosphatase 2A holoenzyme: insights into B55-mediated tau dephosphorylation,” Molecular Cell, vol. 31, no. 6, pp. 873–885, 2008.
[98]
S. Kins, A. Crameri, D. R. H. Evans, B. A. Hemmings, R. M. Nitsch, and J. G?tz, “Reduced protein phosphatase 2A activity induces hyperphosphorylation and altered compartmentalization of tau in transgenic mice,” Journal of Biological Chemistry, vol. 276, no. 41, pp. 38193–38200, 2001.
[99]
H. Tanimukai, I. Grundke-Iqbal, and K. Iqbal, “Up-regulation of inhibitors of protein phosphatase-2A in Alzheimer's disease,” American Journal of Pathology, vol. 166, no. 6, pp. 1761–1771, 2005.
[100]
E. Sontag, A. Luangpirom, C. Hladik et al., “Altered expression levels of the protein phosphatase 2A ABαC enzyme are associated with Alzheimer disease pathology,” Journal of Neuropathology and Experimental Neurology, vol. 63, no. 4, pp. 287–301, 2004.
[101]
C. X. Gong, T. Lidsky, J. Wegiel, L. Zuck, I. Grundke-Iqbal, and K. Iqbal, “Phosphorylation of microtubule-associated protein tau is regulated by protein phosphatase 2A in mammalian brain. Implications for neurofibrillary degeneration in Alzheimer's disease,” Journal of Biological Chemistry, vol. 275, no. 8, pp. 5535–5544, 2000.
[102]
K. Ando, K. Iijima, J. I. Elliott, Y. Kirino, and T. Suzuki, “Phosphorylation-dependent regulation of the interaction of amyloid precursor protein with Fe65 affects the production of β-amyloid,” Journal of Biological Chemistry, vol. 276, no. 43, pp. 40353–40361, 2001.
[103]
K. Iijima, K. Ando, S. Takeda et al., “Neuron-specific phosphorylation of Alzheimer's β-amyloid precursor protein by cyclin-dependent kinase 5,” Journal of Neurochemistry, vol. 75, no. 3, pp. 1085–1091, 2000.
[104]
R. Liu, X.-W. Zhou, H. Tanila et al., “Phosphorylated PP2A (tyrosine 307) is associated with Alzheimer neurofibrillary pathology: in focus,” Journal of Cellular and Molecular Medicine, vol. 12, no. 1, pp. 241–257, 2008.
[105]
E. Sontag, V. Nunbhakdi-Craig, J. Sontag et al., “Protein phosphatase 2A methyltransferase links homocysteine metabolism with tau and amyloid precursor protein regulation,” Journal of Neuroscience, vol. 27, no. 11, pp. 2751–2759, 2007.
[106]
E. E. F. Da Cruz Silva, E. O. A. Da Cruz Silva, C. T. Zaia, and P. Greengard, “Inhibition of protein phosphatase 1 stimulates secretion of Alzheimer amyloid precursor protein,” Molecular Medicine, vol. 1, no. 5, pp. 535–541, 1995.
[107]
M. Holzer, M. K. Brückner, M. Beck, V. Bigl, and T. Arendt, “Modulation of APP processing and secretion by okadaic acid in primary guinea pig neurons,” Journal of Neural Transmission, vol. 107, no. 4, pp. 451–461, 2000.
[108]
I. De Baere, R. Derua, V. Janssens et al., “Purification of porcine brain protein phosphatase 2A leucine carboxyl methyltransferase and cloning of the human homologue,” Biochemistry, vol. 38, no. 50, pp. 16539–16547, 1999.
[109]
J. M. Sontag, V. Nunbhakdi-Craig, L. Montgomery, E. Arning, T. Bottiglieri, and E. Sontag, “Folate deficiency induces in vitro and mouse brain region-specific downregulation of leucine carboxyl methyltransferase-1 and protein phosphatase 2A Bα subunit expression that correlate with enhanced tau phosphorylation,” Journal of Neuroscience, vol. 28, no. 45, pp. 11477–11487, 2008.
[110]
V. Vogelsberg-Ragaglia, T. Schuck, J. Q. Trojanowski, and V. M.-Y. Lee, “PP2A mRNA expression is quantitatively decreased in Alzheimer's disease hippocampus,” Experimental Neurology, vol. 168, no. 2, pp. 402–412, 2001.
[111]
L. H. Wang and S. M. Strittmatter, “Brain CRMP forms heterotetramers similar to liver dihydropyrimidinase,” Journal of Neurochemistry, vol. 69, no. 6, pp. 2261–2269, 1997.
[112]
N. Hamajima, K. Matsuda, S. Sakata, N. Tamaki, M. Sasaki, and M. Nonaka, “A novel gene family defined by human dihydropyrimidinase and three related proteins with differential tissue distribution,” Gene, vol. 180, no. 1-2, pp. 157–163, 1996.
[113]
L. H. Wang and S. M. Strittmatter, “A family of rat CRMP genes is differentially expressed in the nervous system,” Journal of Neuroscience, vol. 16, no. 19, pp. 6197–6207, 1996.
[114]
N. Inagaki, K. Chihara, N. Arimura et al., “CRMP-2 induces axons in cultured hippocampal neurons,” Nature Neuroscience, vol. 4, no. 8, pp. 781–782, 2001.
[115]
T. Morita and K. Sobuě, “Specification of neuronal polarity regulated by local translation of CRMP2 and tau via the mTOR-p70S6K pathway,” Journal of Biological Chemistry, vol. 284, no. 40, pp. 27734–27745, 2009.
[116]
N. Arimura, C. Menager, Y. Fukata, and K. Kaibuchi, “Role of CRMP-2 in neuronal polarity,” Journal of Neurobiology, vol. 58, no. 1, pp. 34–47, 2004.
[117]
N. Arimura, C. Ménager, Y. Kawano et al., “Phosphorylation by Rho kinase regulates CRMP-2 activity in growth cones,” Molecular and Cellular Biology, vol. 25, no. 22, pp. 9973–9984, 2005.
[118]
T. Yoshimura, Y. Kawano, N. Arimura, S. Kawabata, A. Kikuchi, and K. Kaibuchi, “GSK-3β regulates phosphorylation of CRMP-2 and neuronal polarity,” Cell, vol. 120, no. 1, pp. 137–149, 2005.
[119]
M. P. M. Soutar, P. Thornhill, A. R. Cole, and C. Sutherland, “Increased CRMP2 phosphorylation is observed in Alzheimer's disease; does this tell us anything about disease development?” Current Alzheimer Research, vol. 6, no. 3, pp. 269–278, 2009.
[120]
H. Asai, S. Ikezu, M. Varnum, and T. Ikezu, “Phosphorylation of collapsin response mediator protein-2 and axonal degeneration in transgenic mice expressing a familial Alzheimer's disease mutant of APP and tau-tubulin kinase 1,” Alzheimer's & Dementia, vol. 8, no. 4, pp. 649–650, 2012.
[121]
A. Yoneda, M. Morgan-Fisher, R. Wait, J. R. Couchman, and U. M. Wewer, “A collapsin response mediator protein 2 isoform controls myosin II-mediated cell migration and matrix assembly by trapping ROCK II,” Molecular and Cellular Biology, vol. 32, no. 10, pp. 1788–1804, 2012.
[122]
T. Kimura, N. Arimura, Y. Fukata, H. Watanabe, A. Iwamatsu, and K. Kaibuchi, “Tubulin and CRMP-2 complex is transported via Kinesin-1,” Journal of Neurochemistry, vol. 93, no. 6, pp. 1371–1382, 2005.
[123]
Y. Kawano, T. Yoshimura, D. Tsuboi et al., “CRMP-2 is involved in kinesin-1-dependent transport of the Sra-1/WAVE1 complex and axon formation,” Molecular and Cellular Biology, vol. 25, no. 22, pp. 9920–9935, 2005.
[124]
T. Nishimura, Y. Fukata, K. Kato et al., “CRMP-2 regulates polarized Numb-mediated endocytosis for axon growth,” Nature Cell Biology, vol. 5, no. 9, pp. 819–826, 2003.
[125]
M. Tan, S. Ma, Q. Huang, K. Hu, B. Song, and M. Li, “GSK-3α/β-mediated phosphorylation of CRMP-2 regulates activity-dependent dendritic growth,” Journal of Neurochemistry, vol. 125, no. 5, pp. 685–697, 2013.
[126]
Y. Fukata, T. J. Itoh, T. Kimura et al., “CRMP-2 binds to tubulin heterodimers to promote microtubule assembly,” Nature Cell Biology, vol. 4, no. 8, pp. 583–591, 2002.
[127]
G. F. Reis, G. Yang, L. Szpankowski et al., “Molecular motor function in axonal transport in vivo probed by genetic and computational analysis in Drosophila,” Molecular Biology of the Cell, vol. 23, no. 9, pp. 1700–1714, 2012.
[128]
T. L. Falzone and G. B. Stokin, “Imaging amyloid precursor protein in vivo: an axonal transport assay,” Methods in Molecular Biology, vol. 846, pp. 295–303, 2012.
[129]
K. Iqbal and I. Grundke-Iqbal, “Alzheimer abnormally phosphorylated tau is more hyperphosphorylated than the fetal tau and causes the disruption of microtubules,” Neurobiology of Aging, vol. 16, no. 3, pp. 375–379, 1995.
[130]
H. Potter, S. Borysov, C. Ari, et al., “Aβ inhibits specific kinesin motors involved in both mitosis and neuronal function; potential implications for neurogenesis and neuroplasticity in Alzheimer's disease and Down syndrome,” Alzheimer's & Dementia, vol. 7, no. 4, p. 24, 2011.
[131]
K. R. Brunden, Y. Yao, J. S. Potuzak et al., “The characterization of microtubule-stabilizing drugs as possible therapeutic agents for Alzheimer's disease and related tauopathies,” Pharmacological Research, vol. 63, no. 4, pp. 341–351, 2011.
[132]
X. Ye, W. Tai, and D. Zhang, “The early events of Alzheimer's disease pathology: from mitochondrial dysfunction to BDNF axonal transport deficits,” Neurobiology of Aging, vol. 33, no. 6, pp. 1122.e1–1122.e10, 2012.
[133]
P. Mao and P. H. Reddy, “Aging and amyloid beta-induced oxidative DNA damage and mitochondrial dysfunction in Alzheimer's disease: implications for early intervention and therapeutics,” Biochimica et Biophysica Acta, vol. 1812, no. 11, pp. 1359–1370, 2011.
[134]
L. S. B. Goldstein, “Axonal transport and Alzheimer’s diseasein,” in Encyclopedia of Neuroscience, R. S. Larry, Ed., pp. 1189–1194, Academic Press, Oxford, UK, 2009.
[135]
F. Mitsuyama, Y. Futatsugi, M. Okuya et al., “Stimulation-dependent intraspinal microtubules and synaptic failure in Alzheimer's disease: a review,” International Journal of Alzheimer's Disease, vol. 2012, Article ID 519682, 7 pages, 2012.
[136]
M. Paula-Barbosa, M. A. Tavares, and A. Cadete-Leite, “A quantitative study of frontal cortex dendritic microtubules in patients with Alzheimer's disease,” Brain Research, vol. 417, no. 1, pp. 139–142, 1987.
[137]
J. C. Fiala, “Mechanisms of amyloid plaque pathogenesis,” Acta Neuropathologica, vol. 114, no. 6, pp. 551–571, 2007.
[138]
R. Adalbert, A. Nogradi, E. Babetto et al., “Severely dystrophic axons at amyloid plaques remain continuous and connected to viable cell bodies,” Brain, vol. 132, no. 2, pp. 402–416, 2009.
[139]
L. S. B. Goldstein, “Kinesin molecular motors: transport pathways, receptors, and human disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 13, pp. 6999–7003, 2001.
[140]
C. Dhaenens, E. Van Brussel, S. Schraen-Maschke, F. Pasquier, A. Delacourte, and B. Sablonnire, “Association study of three polymorphisms of kinesin light-chain 1 gene with Alzheimer's disease,” Neuroscience Letters, vol. 368, no. 3, pp. 290–292, 2004.
[141]
L. Szpankowski, S. E. Encalada, and L. S. B. Goldstein, “Subpixel colocalization reveals amyloid precursor protein-dependent kinesin-1 and dynein association with axonal vesicles,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 22, pp. 8582–8587, 2012.
[142]
G. B. Stokin, C. Lillo, T. L. Falzone et al., “Axonopathy and transport deficits early in the pathogenesis of Alzheimer's diseases,” Science, vol. 307, no. 5713, pp. 1282–1288, 2005.
[143]
A. Kamal, G. B. Stokin, Z. Yang, C. Xia, and L. S. B. Goldstein, “Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I,” Neuron, vol. 28, no. 2, pp. 449–459, 2000.
[144]
G. Traina, G. Federighi, and M. Brunelli, “Up-regulation of kinesin light-chain 1 gene expression by acetyl-l-carnitine: therapeutic possibility in Alzheimer's disease,” Neurochemistry International, vol. 53, no. 6–8, pp. 244–247, 2008.
[145]
T. L. Falzone, S. Gunawardena, D. McCleary, G. F. Reis, and L. S. B. Goldstein, “Kinesin-1 transport reductions enhance human tau hyperphosphorylation, aggregation and neurodegeneration in animal models of tauopathies,” Human Molecular Genetics, vol. 19, no. 22, Article ID ddq363, pp. 4399–4408, 2010.
[146]
T. T. Quach, A. Duchemin, V. Rogemond et al., “Involvement of collapsin response mediator proteins in the neurite extension induced by neurotrophins in dorsal root ganglion neurons,” Molecular and Cellular Neuroscience, vol. 25, no. 3, pp. 433–443, 2004.