全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Response of Herbicide-Resistant Palmer Amaranth (Amaranthus palmeri) Accessions to Drought Stress

DOI: 10.1155/2013/823913

Full-Text   Cite this paper   Add to My Lib

Abstract:

Palmer amaranth is a very problematic weed in several crops in the southern USA due to its competitive ability and resistance to herbicides representing different mechanisms of action. Variation in growth and subsequent interference of North Carolina Palmer amaranth accessions has not been examined. A greenhouse experiment determined response of 15 North Carolina Palmer amaranth accessions to drought stress beginning 15 days after seedling emergence (DAE) for a duration of 3, 5, 7, and 9 days. Following exposure to drought, plants were grown under optimal moisture conditions until harvest at 30 DAE. Five accessions each of glyphosate-resistant (GR), acetolactate synthase inhibitor-resistant (ALSR), and acetolactate synthase inhibitor-susceptible and glyphosate-susceptible (ALSS/GS) were compared. Variation in response to drought stress, based on height and dry weight reduction relative to nonstressed controls, was noted among accessions. Stress for 3 or more days affected height and dry weight. Height and dry weight of GR and ALSR accession groups were reduced less by drought than the ALSS/GS accession group. Results suggest a possible relationship between herbicide resistance and ability of Palmer amaranth to withstand drought stress and thus a possible competitive advantage for resistant accessions under limited moisture availability. 1. Introduction The ability of crops and weeds to extract water from soil and their response to moisture stress are key factors in determining the outcome of crop-weed interference under drought [1–6]. Ability to absorb water from soil under limited water availability, water use efficiency, and transpiration vary among crop and weed species [7–11]. For example, water use efficiency of genotypes of vegetable amaranth (Amaranthus tricolor L., A. blitum L., and A. cruentus L.) was not affected by drought stress. However, stress significantly reduced total plant dry mass and leaf area per unit root dry mass and increased root dry mass ratio differently in genotypes [12]. Under limited water conditions, plants respond differently and show a wide range of drought tolerance mechanisms both in terms of morphology and physiology [13]. In another experiment involving vegetable amaranth, significant variation existed among genotypes for transpiration and stomatal conductance which was positively correlated with relative decrease in dry weight across four genotypes [14]. The critical period for crop-weed interference and the extent of crop losses to weed competition can be influenced by soil moisture availability [3]. In some

References

[1]  J. K. A. Bleasdale, “Studies on plant competition,” in The Biology of Weeds, J. L. Harper, Ed., pp. 133–142, Blackwell Scientific Publishers, Oxford, UK, 1960.
[2]  A. G. Ogg Jr., R. H. Stephens, and D. R. Gealy, “Interference between mayweed chamomile (Anthemis cotula) and pea (Pisum sativum) is affected by form of interference and soil water regime,” Weed Science, vol. 42, no. 4, pp. 579–585, 1994.
[3]  D. T. Patterson, “Effects of environmental stress on weed/crop interactions,” Weed Science, vol. 43, no. 3, pp. 483–490, 1995.
[4]  M. S. Riffle, D. S. Murray, J. F. Stone, and D. L. Weeks, “Soil-water relations and interference between devil's-claw (Proboscidea louisianica) and cotton (Gossypium hirsutum),” Weed Science, vol. 38, no. 1, pp. 39–44, 1990.
[5]  A. F. Wiese and C. W. Van Diver, “Soil moisture effects on competitive ability of weeds,” Weed Science, vol. 18, no. 4, pp. 518–519, 1970.
[6]  R. L. Zimdahl, Weed-Crop Competition A Review, Blackwell Publishers, Ames, Iowa, USA, 2nd edition, 2004.
[7]  R. J. Aldrich, Weed-Crop Ecology: Principles in Weed Management, Breton Publishers, North Scituate, Mass, USA, 1984.
[8]  R. D. Geddes, H. D. Scott, and L. R. Oliver, “Growth and water use by common cocklebur (Xanthium pensylvanicum) and soybean (Glycine max) under field conditions,” Weed Science, vol. 27, no. 2, pp. 206–212, 1979.
[9]  J. L. Harper, Population Biology of Plants, Academic Press, London, UK, 1977.
[10]  D. T. Patterson, “Responses of soybean (Glycine max) and three C4 grass weeds to CO2 enrichment during drought,” Weed Science, vol. 34, no. 2, pp. 203–210, 1986.
[11]  D. T. Patterson and E. P. Flint, “Comparative water relations, photosynthesis, and growth of soybean (Glycine max) and seven associated weeds,” Weed Science, vol. 31, no. 3, pp. 318–323, 1983.
[12]  F. Liu and H. Stützel, “Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress,” Scientia Horticulturae, vol. 102, no. 1, pp. 15–27, 2004.
[13]  A. Blum, “Crop responses to drought and the interpretation of adaptation,” Plant Growth Regulation, vol. 20, no. 2, pp. 135–148, 1996.
[14]  F. Liu and H. Stützel, “Leaf expansion, stomatal conductance, and transpiration of vegetable amaranth (Amaranthus sp.) in response to soil drying,” Journal of the American Society for Horticultural Science, vol. 127, no. 5, pp. 878–883, 2002.
[15]  F. L, Young, D. L. Wyse, and R. J. Jones, “Effect of irrigation on quackgrass (Agropyron repens) interference in soybean (Glycine max),” Weed Science, vol. 31, no. 5, pp. 720–727, 1983.
[16]  F. L. Young, D. L. Wyse, and R. J. Jones, “Quackgrass (Agropyron repens) interference in corn (Zea mays),” Weed Science, vol. 32, no. 2, pp. 226–234, 1984.
[17]  D. A. Mortensen and H. D. Coble, “The influence of soil water content on common cocklebur (Xanthium strumarium) interference in soybeans (Glycine max),” Weed Science, vol. 37, no. 1, pp. 76–83, 1989.
[18]  S. E. Weaver, “Factors affecting threshold levels and seed production of jimsonweed (Datura stramonium L.) in soybeans (Glycine max (L.) Merr.),” Weed Research, vol. 26, no. 3, pp. 215–224, 1986.
[19]  H. D. Coble, F. M. Williams, and R. L. Ritter, “Common ragweed (Ambrosia artemisiifolia L.) interference in soybeans (Glycine max),” Weed Science, vol. 29, no. 3, pp. 339–342, 1981.
[20]  L. A. Jackson, G. Kapusta, and D. J. Schutte Mason, “Effect of duration and type of natural weed infestations on soybean yield,” Agronomy Journal, vol. 77, no. 5, pp. 225–729, 1985.
[21]  S. K. Harrison, C. S. Williams, and L. M. Wax, “Interference and control of giant foxtail (Setaria faberi) in soybeans (Glycine max),” Weed Science, vol. 33, no. 2, pp. 203–208, 1985.
[22]  T. M. Webster, “Weed survey—southern states,” Proceedings Southern Weed Science Society, vol. 62, pp. 509–524, 2009.
[23]  C. C. Black, T. M. Chen, and R. H. Brown, “Biochemical basis for plant competition,” Weed Science, vol. 17, no. 3, pp. 338–344, 1969.
[24]  A. S. Culpepper, T. M. Webster, L. M. Sosnoskie, and A. C. York, “Glyphosate-resistant Palmer amaranth in the United States,” in Glyphosate Resistance in Crops and Weeds: History, Development, and Management, V. K. Nandula, Ed., pp. 195–212, John Wiley & Sons, Hoboken, NJ, USA, 2010.
[25]  I. Heap, “The International Survey of Herbicide Resistant Weeds,” 2012, http://www.weedscience.org.
[26]  M. J. Horak and T. M. Loughin, “Growth analysis of four Amaranthus species,” Weed Science, vol. 48, no. 3, pp. 347–355, 2000.
[27]  S. Radosevich, J. Holt, and C. Ghersa, Weed Ecology: Implications for Management, John Wiley & Sons, New York, NY, USA, 2nd edition, 1997.
[28]  C. Preston, A. M. Wakelin, F. C. Dolman, Y. Bostamam, and P. Boutsalis, “A decade of glyphosate-resistant lolium around the world: mechanisms, genes, fitness, and agronomic management,” Weed Science, vol. 57, no. 4, pp. 435–441, 2009.
[29]  M. A. Jasieniuk, A. L. Br?l-Babel, and I. N. Morrison, “The evolution and genetics of herbicide resistance in weeds,” Weed Science, vol. 44, no. 1, pp. 176–193, 1996.
[30]  C. Preston and S. B. Powles, “Evolution of herbicide resistance in weeds: initial frequency of target site-based resistance to acetolactate synthase-inhibiting herbicides in Lolium rigidum,” Heredity, vol. 88, no. 1, pp. 8–13, 2002.
[31]  B. P. Pedersen, P. Neve, C. Andreasen, and S. B. Powles, “Ecological fitness of a glyphosate-resistant Lolium rigidum population: growth and seed production along a competition gradient,” Basic and Applied Ecology, vol. 8, no. 3, pp. 258–268, 2007.
[32]  C. Preston and A. M. Wakelin, “Resistance to glyphosate from altered herbicide translocation patterns,” Pest Management Science, vol. 64, no. 4, pp. 372–376, 2008.
[33]  A. M. Wakelin and C. Preston, “The cost of glyphosate resistance: is there a fitness penalty associated with glyphosate resistance in annual ryegrass,” in Managing Weeds in a Changing Climate, C. Preston, J. H. Watts, and N. D. Crossman, Eds., pp. 515–518, Weed Management Society of South Australia, Torrens Park, South Australia, 2006.
[34]  N. Jordan, “Effects of the triazine-resistance mutation on fitness in Amaranthus hybridus (smooth pigweed),” Journal of Applied Ecology, vol. 33, no. 1, pp. 141–150, 1996.
[35]  N. Jordan, “Fitness effects of the triazine resistance mutation in Amaranthus hybridus: relative fitness in maize and soyabean crops,” Weed Research, vol. 39, no. 6, pp. 493–505, 1999.
[36]  R. Cousens and M. Mortimer, Dynamics of Weed Populations, Cambridge University Press, West Nyack, NY, USA, 1995.
[37]  J. Ehleringer, “Ecophysiology of Amaranthus palmeri, a sonoran desert summer annual,” Oecologia, vol. 57, no. 1-2, pp. 107–112, 1983.
[38]  J. R. Whitaker, Distribution, biology, and management of glyphosate-resistant Palmer amaranth in North Carolina [Ph.D. dissertation], North Carolina State University, Raleigh, NC, USA, 2009.
[39]  T. E. Klingaman and L. R. Oliver, “Palmer amaranth (Amaranthus palmeri) interference in soybeans (Glycine max),” Weed Science, vol. 42, no. 4, pp. 523–527, 1994.
[40]  B. Bukun, “Critical periods for weed control in cotton in Turkey,” Weed Research, vol. 44, no. 5, pp. 404–412, 2004.
[41]  A. S. Culpepper and A. C. York, “Weed management in glyphosate-tolerant cotton,” Journal of Cotton Science, vol. 2, no. 4, pp. 174–185, 1998.
[42]  B. J. Fast, S. W. Murdock, R. L. Farris, J. B. Willis, and D. S. Murray, “Critical timing of palmer amaranth (Amaranthus palmeri) removal in second-generation glyphosate-resistant cotton,” Journal of Cotton Science, vol. 13, no. 1, pp. 32–36, 2009.
[43]  D. Papamichail, I. Eleftherohorinos, R. Froud-Williams, and F. Gravanis, “Critical periods of weed competition in cotton in Greece,” Phytoparasitica, vol. 30, no. 1, pp. 105–111, 2002.
[44]  A. Chandi, D. L. Jordan, A. C. York et al., “Interference of selected Palmer amaranth (Amaranthus palmeri) populations in soybean (Glycine max),” International Journal of Agronomy, vol. 2012, Article ID 168267, 7 pages, 2012.
[45]  A. Chandi, D. L. Jordan, A. C. York et al., “Interference and control of glyphosate-resistant and -susceptible Palmer amaranth (Amaranthus palmeri) populations under greenhouse conditions,” Weed Science, Article ID WS-D-12-00063, 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133