Information is limited concerning the impact of delaying applications of pesticides after solution preparation on efficacy. Experiments were conducted to determine weed control when diclosulam, dimethenamid-P, flumioxazin, fomesafen, imazethapyr, pendimethalin, and S-metolachlor were applied preemergence the day of solution preparation or 3, 6, and 9 days after solution preparation. Herbicide solutions were applied on the same day regardless of when prepared. Control of broadleaf signalgrass, common lambsquarters, entireleaf morningglory, and Palmer amaranth by these herbicides was not reduced regardless of when herbicide solutions were prepared. Surprisingly entireleaf morningglory control by all herbicides increased when herbicide application was delayed by 9 days. In separate experiments, control of broadleaf signalgrass by clethodim, common ragweed by glyphosate and lactofen, entireleaf morningglory by lactofen, Italian rye grass by glyphosate and paraquat, and Palmer amaranth by atrazine, dicamba, glufosinate, glyphosate, imazethapyr, lactofen, and 2,4-D was affected more by increase in weed size due to delayed application than the time between solution preparation and application. 1. Introduction Unforeseen circumstances such as high wind speed, excessive rain, and equipment failure may prevent timely application of spray solutions. Spray water quality has been shown to reduce efficacy of glyphosate and other herbicides applied postemergence [1–6]. The greater the length of time the herbicide is in solution the greater the possibility of interactions among constituents in the aqueous carrier [7, 8]. Ammonium sulfate as a spray conditioner prior to adding glyphosate or other herbicides to the solution can minimize adverse effects of polyvalent compounds on herbicide absorption and subsequent efficacy [9–13]. The amount of time between solution preparation and application may increase the time herbicides and polyvalent cations can interact and possibly affect weed control [8]. Efficacy may be affected when pesticides remain in spray solutions for extended periods of time. Permethrin left in municipality ultra-low volume spray tanks for 4 months averaged 55.5% degradation of the product when analyzed by gas chromatography [14]. In cotton (Gossypium hirsutum L.), performance of ethephon, indoxacarb, methomyl, spinosad, and thidiazuron was influenced when spray solution application was delayed 1 or more days, whereas efficacy of acephate, carfentrazone, diuron plus thidiazuron, ethephon plus cyclanilide, indoxacarb, lambda-cyhalothrin,
References
[1]
Anonymous, “United State Geological Survey-National Water Quality Assessment Program,” 2010, http://water.usgs.gov/nawqa/studies/domestic_wells/hardness.html.
[2]
D. D. Buhler and O. C. Burnside, “Effect of water quality, carrier volume, and acid on glyphosate phytotoxicity,” Weed Science, vol. 31, no. 2, pp. 163–169, 1983.
[3]
J. D. Nalewaja, F. A. Manthey, and R. Anyska, “Sodium bicarbonate antagonism of sethoxydim,” Weed Technology, vol. 3, no. 4, pp. 654–658, 1989.
[4]
J. D. Nalewaja and R. Matysiak, “Spray carrier salts affect herbicide toxicity to kochia (Kochia scoparia),” Weed Technology, vol. 7, no. 1, pp. 154–158, 1993.
[5]
P. W. Stahlman and W. M. Phillips, “Effects of water quality and spray volume on glyphosate phytotoxicity,” Weed Science, vol. 27, no. 1, pp. 38–41, 1979.
[6]
K. D. Thelen, E. P. Jackson, and D. Penner, “The basis for the hard-water antagonism of glyphosphate activity,” Weed Science, vol. 43, no. 4, pp. 541–548, 1995.
[7]
C.-H. Lin, R. N. Lerch, H. E. Garrett, and M. F. George, “Degradation of Isoxaflutole (Balance) Herbicide by Hypochlorite in Tap Water,” Journal of Agricultural and Food Chemistry, vol. 51, no. 27, pp. 8011–8014, 2003.
[8]
J. D. Nalewaja, R. Matysiak, and E. Szelezniak, “Sethoxydim response to spray carrier chemical properties and environment,” Weed Technology, vol. 8, no. 3, pp. 591–597, 1994.
[9]
D. Penner, D. Pratt, and J. J. Kells, “Substitutes for ammonium sulfate as additives with glyphosate and glufosinate,” Weed Technology, vol. 17, no. 3, pp. 576–581, 2003.
[10]
J. D. Nalewaja and R. Matysiak, “Influence of diammonium sulfate and other salts on glyphosate phytotoxicity,” Pesticide Science, vol. 38, no. 2-3, pp. 77–84, 1993.
[11]
K. D. Thelen, E. P. Jackson, and D. Penner, “The basis for the hard-water antagonism of glyphosphate activity,” Weed Science, vol. 43, no. 4, pp. 541–548, 1995.
[12]
A. M. Blair, “The addition of ammonium salts or a phosphate ester to herbicides to control Agropyron repens (L) Beauv,” Weed Research, vol. 15, no. 2, pp. 101–105, 1975.
[13]
G. J. Hall, C. A. Hart, and C. A. Jones, “Plants as sources of cations antagonistic to glyphosate activity,” Pest Management, vol. 56, no. 4, pp. 351–358, 2000.
[14]
R.-D. Xue, W. A. Qualls, H. Zhong, and C. L. Brock, “Permethrin decomposition after four month storage in the spray truck tanks during mosquito off season,” Journal of the American Mosquito Control Association, vol. 24, no. 1, pp. 127–129, 2008.
[15]
P. M. Eure, D. L. Jordan, J. S. Bacheler, A. C. York, L. R. Fisher, and R. Wells, “Agronomy and soils: performance of cotton agrochemicals when spray solution application is delayed,” Journal of Cotton Science, vol. 15, no. 3, pp. 215–223, 2011.
[16]
P. M. Eure, D. L. Jordan, G. S. Chahal et al., “Evaluation of pesticide efficacy in situation where spray application is delayed,” Proceedings American Peanut Research and Education Society, vol. 42, pp. 60–61, 2010.
[17]
P. M. Eure, L. R. Fisher, A. M. Stewart, and D. L. Jordan, “Evaluation of growth regulators and ripening agent used in flue-cured tobacco when spray-solution application is delayed,” Tobacco Science, vol. 49, pp. 21–24, 2012.
[18]
C. L. Stewart, R. E. Nurse, M. Cowbrough, and P. H. Sikkema, “How long can a herbicide remain in the spray tank without losing efficacy?” Crop Protection, vol. 28, no. 12, pp. 1086–1090, 2009.
[19]
G. O. Kegode and B. E. Fronning, “Artemisia biennis (biennial wormwood) control is influenced by plant size and weed flora at time of herbicide application,” Crop Protection, vol. 24, no. 10, pp. 915–920, 2005.
[20]
D. L. Jordan, A. C. York, J. L. Griffin, P. A. Clay, P. R. Vidrine, and D. B. Reynolds, “Influence of application variables on efficacy of glyphosate,” Weed Technology, vol. 11, no. 2, pp. 354–362, 1997.
[21]
R. M. Edmund, Jr, and A. C. York, “Factors affecting postemergence control of sicklepod with imazaquin and DPX-F6025: spray volume, growth stage, and soil-applied alachlor and vernolate,” Weed Science, vol. 35, no. 2, pp. 216–223, 1987.
[22]
J. E. Chafin, A. S. Culpepper, and L. B. Braxton, “Palmer amaranth, benghal dayflower, carpetweed, pitted morningglory, and broadleaf signalgrass response to glufosinate applied alone or mixed with 2, 4-D or dicamba,” in Proceeding of the Beltwide Cotton Conference: Cotton Weed Science Research Conference, pp. 1551–1552, 2010.
[23]
A. S. Culpepper, A. C. York, P. Roberts, and J. R. Whitaker, “Weed control and crop response to glufosinate applied to 'PHY 485 WRF' cotton,” Weed Technology, vol. 23, no. 3, pp. 356–362, 2009.
[24]
B. A. Sellers, J. A. Ferrell, G. E. MacDonald, and W. N. Kline, “Dogfennel (Eupatorium capillifolium) size at application affects herbicide efficacy,” Weed Technology, vol. 23, no. 2, pp. 247–250, 2009.
[25]
R. Frans, R. Ralbert, D. Marx, and H. Crowley, “Experimental design and techniques for measuring and analyzing plant responses to weed control practices,” in Research Methods in Weed Science, N. D. Camper, Ed., pp. 37–38, Southern Weed Science Society, 3rd edition, 1986.
[26]
T. C. Mueller and L. E. Steckel, “Efficacy and dissipation of pyroxasulfone and three chloroacetamides in a tennessee field soil,” Weed Science, vol. 59, no. 4, pp. 574–579, 2011.
[27]
S. B. Clewis, W. J. Everman, D. L. Jordan, and J. W. Wilcut, “Weed management in North Carolina peanuts (Arachis hypogaea) with S-metolachlor, diclosulam, flumioxazin, and sulfentrazone systems,” Weed Technology, vol. 21, no. 3, pp. 629–635, 2007.
[28]
C. L. Main, J. T. Ducar, E. B. Whitty, and G. E. Macdonald, “Weed management in southeastern peanut with diclosulam and flumioxazin,” Weed Technology, vol. 19, no. 4, pp. 870–874, 2005.
[29]
R. J. Richardson, H. P. Wilson, and T. E. Hines, “Preemergence herbicides followed by trifloxysulfuron postemergence in cotton,” Weed Technology, vol. 21, no. 1, pp. 1–6, 2007.
[30]
S. D. Askew, J. W. Wilcut, and J. Cranmer, “Cotton (Gossypium hirsutum) and weed response to flumioxazin applied preplant and postemergence directed,” Weed Technology, vol. 16, no. 1, pp. 184–190, 2002.
[31]
S. L. Meyers, K. M. Jennings, J. R. Schultheis, and D. W. Monks, “Evaluation of flumioxazin and S-metolachlor rate and timing for palmer amaranth (Amaranthus palmeri) control in sweetpotato,” Weed Technology, vol. 24, no. 4, pp. 495–503, 2010.
[32]
J. R. Whitaker, A. C. York, D. L. Jordan, and A. S. Culpepper, “Palmer amaranth (Amaranthus palmeri) control in soybean with glyphosate and conventional herbicide systems,” Weed Technology, vol. 24, no. 4, pp. 403–410, 2010.
[33]
N. R. Burgos and R. E. Talbert, “Weed control by spring cover crops and imazethapyr in no-till southern pea (Vigna unguiculata),” Weed Technology, vol. 10, no. 4, pp. 893–899, 1996.
[34]
G. J. Steckel, L. M. Wax, F. W. Simmons, and W. H. Phillips II, “Glufosinate efficacy on annual weeds is influenced by rate and growth stage,” Weed Technology, vol. 11, no. 3, pp. 484–488, 1997.
[35]
C. A. King and L. R. Oliver, “Application rate and timing of acifluorfen, bentazon, chlorimuron, and imazaquin,” Weed Technology, vol. 6, no. 3, pp. 526–534, 1992.
[36]
E. Coetzer, K. Al-Khatib, and T. M. Loughin, “Glufosinate efficacy, absorption, and translocation in amaranth as affected by relative humidity and temperature,” Weed Science, vol. 49, no. 1, pp. 8–13, 2001.
[37]
D. M. Anderson, C. J. Swanton, J. C. Hall, and B. G. Mersey, “The influence of temperature and relative humidity on the efficacy of glufosinate-ammonium,” Weed Research, vol. 33, no. 2, pp. 139–147, 1993.
[38]
J. D. Nalewaja and Z. Woznica, “Environment and chlorsulfuron phytotoxicity,” Weed Science, vol. 33, no. 3, pp. 395–399, 1985.