全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Covariance Structures in Conventional and Organic Cropping Systems

DOI: 10.1155/2013/494026

Full-Text   Cite this paper   Add to My Lib

Abstract:

Guidelines are needed to develop proper statistical analyses procedures and select appropriate models of covariance structures in response to expected temporal variation in long-term experiments. Cumulative yield, its temporal variance, and coefficient of variation were used in estimating and describing covariance structures in conventional and organic cropping systems of a long-term field experiment in a randomized complete block design. An 8-year database on 16 treatments (conventional and organic cropping systems, crop rotations, and tillage) was subjected to geostatistical, covariance structure, variance components, and repeated measures multivariate analyses using six covariance models under restricted maximum likelihood. Differential buildup of the cumulative effects due to crop rotations being repeated over time was demonstrated by decreasing structured and unstructured variances and increasing range estimates in the geostatistical analyses. The magnitude and direction of relationships between cumulative yield and its temporal variance, and coefficient of variation shaped the covariance structures of both cropping systems, crop rotations, and phases within crop rotations and resulted in significant deviations of organic management practices from their conventional counterparts. The unstructured covariance model was the best to fit most factor-variable combinations; it was the most flexible, but most costly in terms of computation time and number of estimated parameters. 1. Introduction Long-term experiments (LTEs) that include fixed and random factors are valuable tools in understanding the effects of spatiotemporal variation and in developing guidelines for proper management practices [1, 2]. Moreover, LTEs can delineate risks and stability of cropping practices due to year-to-year variability in biotic and abiotic stresses [3]. A major advantage of an LTE over short-term experiment is that it provides insight into the causes of the changes in the slope of the responses, the causes of the inflection points, and the magnitude of the long-term change in crop yield and its variance, whereas a short-term experiment focuses only on the initial trajectories of variables under study [4]. In addition, there is more interest in examining not only treatment main effects but also, more importantly, the treatment × time interaction through which cumulative effects of treatments can be quantified and contrasted [5]. Crop yield in LTEs with repeated measures involving diverse cropping systems and crop rotations can be expressed as a function of large-scale

References

[1]  B. Govaerts, N. Verhulst, K. D. Sayre et al., “Evaluating spatial within plot crop variability for different management practices with an optical sensor?” Plant and Soil, vol. 299, no. 1-2, pp. 29–42, 2007.
[2]  R. G. Smith, F. D. Menalled, and G. P. Robertson, “Temporal yield variability under conventional and alternative management systems,” Agronomy Journal, vol. 99, no. 6, pp. 1629–1634, 2007.
[3]  J. A. Coulter, C. C. Sheaffer, D. L. Wyse et al., “Agronomic performance of cropping systems with contrasting crop rotations and external inputs,” Agronomy Journal, vol. 103, no. 1, pp. 182–192, 2011.
[4]  A. K. Knapp, M. D. Smith, S. E. Hobbie et al., “Past, present, and future roles of long-term experiments in the LTER network,” BioScience, vol. 62, no. 4, pp. 377–389, 2012.
[5]  T. M. Loughin, M. P. Roediger, G. A. Milliken, and J. P. Schmidt, “On the analysis of long-term experiments,” Journal of the Royal Statistical Society A, vol. 170, no. 1, pp. 29–42, 2007.
[6]  K. T. Stefanova, A. B. Smith, and B. R. Cullis, “Enhanced diagnostics for the spatial analysis of field trials,” Journal of Agricultural, Biological, and Environmental Statistics, vol. 14, no. 4, pp. 392–410, 2009.
[7]  M. Singh and M. Pala, “Use of covariance structures for temporal errors in the analysis of a three-course wheat rotation and tillage trial,” Journal of Agricultural Science, vol. 142, no. 2, pp. 193–201, 2004.
[8]  A. A. Jaradat and S. L. Weyers, “Statistical modeling of yield and variance instability in conventional and organic cropping systems,” Agronomy Journal, vol. 103, no. 3, pp. 673–684, 2011.
[9]  N. Cressie and C. K. Wikle, Statistics for Spatio-Temporal Data, Wiley & Sons, Hoboken, NJ, USA, 2011.
[10]  R. W. Payne, S. A. Harding, D. A. Murray et al., The Guide to Genstat Release 10, Part 2: Statistics, VSN International, Hemel Hempstead, UK, 2007.
[11]  E. E. Gbur, W. W. Stroup, K. S. McCarter et al., Analysis of Generalized Linear Mixed Models in the Agricultural and Natural Resources Science, 2012, http://www.agronomy.org/publications/books.
[12]  H. P. Piepho, A. Büchse, and C. Richter, “A mixed modelling approach for randomized experiments with repeated measures,” Journal of Agronomy and Crop Science, vol. 190, no. 4, pp. 230–247, 2004.
[13]  A. A. Jaradat, “Dynamics of mean-variance-skewness of cumulative crop yield impact temporal yield variance,” International Journal of Agronomy, vol. 2011, Article ID 426582, 9 pages, 2011.
[14]  GS+, Geostatistics for the Environmental Sciences, V 7. 0, Gamma Design Software, LLC, East Lansing, Mich, USA, 2007.
[15]  F. J. Rohlf, NTSYSpc: Numerical Taxonomy System, ver. 2. 21c. Exeter Software, Setauket, NY, USA, 2009.
[16]  J. B. Grace, T. Michael Anderson, O. Han, and S. M. Scheiner, “On the specification of structural equation models for ecological systems,” Ecological Monographs, vol. 80, no. 1, pp. 67–87, 2010.
[17]  StatSoft, Inc, “STATISTICA, " (data analysis software systems) version 10,” 2012, http://www.statsoft.com.
[18]  R. Webster and R. W. Payne, “Analysing repeated measurements in soil monitoring and experimentation,” European Journal of Soil Science, vol. 53, no. 1, pp. 1–13, 2002.
[19]  S. Blackmore, R. J. Godwin, and S. Fountas, “The analysis of spatial and temporal trends in yield map data over six years,” Biosystems Engineering, vol. 84, no. 4, pp. 455–466, 2003.
[20]  Q. Ma, Y. L. Wang, H. Zhou, Y. G. Xu, C. M. Jiang, and W. T. Yu, “Corn yield and yield stability under varying nutrient management, crop rotation, and rainfall,” International Journal of Plant Production, vol. 6, no. 1, pp. 73–92, 2012.
[21]  R. Van Der Leeden, “Multilevel analysis of repeated measures data,” Quality and Quantity, vol. 32, no. 1, pp. 15–29, 1998.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133