全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Changes in Protein, Nonnutritional Factors, and Antioxidant Capacity during Germination of L. campestris Seeds

DOI: 10.1155/2012/387407

Full-Text   Cite this paper   Add to My Lib

Abstract:

The changes in SDS-PAGE proteins patterns, oligosaccharides and phenolic compounds of L. campestris seeds, were evaluated during nine germination days. SDS-PAGE pattern showed 12 bands in the original protein seeds, while in the samples after 1–9 germination days, the proteins located in the range of 28–49 and 49–80 kDa indicated an important reduction, and there was an increase in bands about 27?kDa. On the other hand, oligosaccharides showed more than 50% of decrease in its total concentration after 4 germination days; nevertheless after the fifth day, the oligosaccharides concentration increases and rises more than 30% of the original concentration. Phenolic compounds increased their concentration since the first germination day reaching until 450% more than the original seed level. The obtained results are related with liberation or increase of phenolic compounds with antioxidant properties, allowing us to suggest that the germination would be used to produce legume foods for human consumption with better nutraceutical properties. 1. Introduction Legume seeds are important staple foods, particularly in developing countries, due to their relatively low cost, long conservation time, and high nutritional value; among these meals it is Lupinus seeds and their derivatives. This legume is one of the richest sources of vegetable protein, and although the protein content and amino acid profile vary between species, the intraspecies variability is low. In 2009, the FAOST reported that the area harvested was 662712?Ha, and L. albus and L. angustifolius were the most widely used. About 100 wild species have been reported throughout México [1]. These wild lupins have not been exploited at a commercial level. For this reason, in the present work we consider them as potential providers of vegetable proteins for human consumption. Lupinus campestris seed, like other Lupinus species, has high protein content (44%) [1, 2]. Lupin seeds offer some advantages in comparison with soy bean, since it contains only small amounts of trypsin inhibitors, tannins, phytates, saponins, α-galactosides, and so forth [3, 4]. However, a limitation for the wider use of lupins has been their high content of quinolizidine alkaloids [5, 6] as well as condensed tannins [7, 8]. Consequently, it is desirable to develop transformation processes which could improve the nutritional quality of legumes and also provide new derived products for the consumers. Germination is considered a potentially beneficial process for legume seed transformation which may decrease undesirable components such as

References

[1]  M. A. Ruiz and A. Sotelo, “Chemical composition, nutritive value, and toxicology evaluation of Mexican wild lupinst,” Journal of Agricultural and Food Chemistry, vol. 49, no. 11, pp. 5336–5339, 2001.
[2]  A. Sujak, A. Kotlarz, and W. Strobel, “Compositional and nutritional evaluation of several lupin seeds,” Food Chemistry, vol. 98, no. 4, pp. 711–719, 2006.
[3]  C. De la Cuadra, M. Muzquiz, C. Burbano et al., “Alkaloid, alpha-galactoside and phytic acid changes in germinating lupin seeds,” Journal of the Science of Food and Agriculture, vol. 66, no. 3, pp. 357–364, 1994.
[4]  M. A. Ruiz-López, P. M. García-López, H. Casta?eda-Vazquez et al., “Chemical composition and antinutrient content of three lupinus species from jalisco, Mexico,” Journal of Food Composition and Analysis, vol. 13, no. 3, pp. 193–199, 2000.
[5]  D. Resta, G. Boschin, A. D'Agostina, and A. Arnoldi, “Evaluation of total quinolizidine alkaloids content in lupin flours, lupin-based ingredients, and foods,” Molecular Nutrition and Food Research, vol. 52, no. 4, pp. 490–495, 2008.
[6]  L. C. Trugo, L. A. Ramos, N. M. F. Trugo, and M. C. P. Souza, “Oligosaccharide composition and trypsin inhibitor activity of P. vulgaris and the effect of germination on the α-galactoside composition and fermentation in the human colon,” Food Chemistry, vol. 36, no. 1, pp. 53–61, 1990.
[7]  M. De Cortes Sánchez, P. Altares, M. M. Pedrosa et al., “Alkaloid variation during germination in different lupin species,” Food Chemistry, vol. 90, no. 3, pp. 347–355, 2005.
[8]  C. Jiménez-Martínez, H. Hernández-Sánchez, G. Alvárez-Manilla, N. Robledo-Quintos, J. Martínez-Herrera, and G. Dávila-Ortiz, “Effect of aqueous and alkaline thermal treatments on chemical composition and oligosaccharide, alkaloid and tannin contents of Lupinus campestris seeds,” Journal of the Science of Food and Agriculture, vol. 81, pp. 421–428, 2001.
[9]  M. Muzquiz, M. Pedrosa, C. Cuadrado, G. Ayet, C. Burbano, and A. Brenes, “Variation of alkaloids, alkaloid esters, phytic acid, and phytase activity in germinated seed of Lupinus albus and L. luteus,” in Recent Advances of Research in Antinutritional Factors in Legume Seeds and Rapeseed, A. M. Jansman, G. Hill, J. Huisman, and A. van der Poel, Eds., vol. 93, pp. 387–339, Wageningen Pers, Wageningen, The Netherlands, 1998.
[10]  C. H. Riddoch, C. F. Mills, and G. G. Duthie, “An evaluation of germinating beans as a source of vitamin C in refugee foods,” European Journal of Clinical Nutrition, vol. 52, no. 2, pp. 115–118, 1998.
[11]  Y.-H. Kuo, P. Rozan, F. Lambein, J. Frias, and C. Vidal-Valverde, “Effects of different germination conditions on the contents of free protein and non-protein amino acids of commercial legumes,” Food Chemistry, vol. 86, no. 4, pp. 537–545, 2004.
[12]  K. E. Heim, A. R. Tagliaferro, and D. J. Bobilya, “Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships,” Journal of Nutritional Biochemistry, vol. 13, no. 10, pp. 572–584, 2002.
[13]  R. Fernandez-Orozco, M. K. Piskula, H. Zielinski, H. Kozlowska, J. Frias, and C. Vidal-Valverde, “Germination as a process to improve the antioxidant capacity of Lupinus angustifolius L. var. Zapaton,” European Food Research and Technology, vol. 223, no. 4, pp. 495–502, 2006.
[14]  J. Frias, M. L. Miranda, R. Doblado, and C. Vidal-Valverde, “Effect of germination and fermentation on the antioxidant vitamin content and antioxidant capacity of Lupinus albus L. var. Multolupa,” Food Chemistry, vol. 92, no. 2, pp. 211–220, 2005.
[15]  H. Schagger and G. von Jagow, “Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100?kDa,” Analytical Biochemistry, vol. 166, no. 2, pp. 368–379, 1987.
[16]  M. Muzquiz, C. Rey, C. Cuadrado, and G. R. Fenwick, “Effect of germination on the oligosaccharide content of lupin species,” Journal of Chromatography, vol. 607, no. 2, pp. 349–352, 1992.
[17]  V. L. Singleton, R. Orthofer, and R. M. Lamuela-Raventós, “Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent,” Methods in Enzymology, vol. 299, pp. 152–178, 1998.
[18]  ?. Male? and M. Medi?-?ari?, “Optimization of TLC analysis of flavonoids and phenolic acids of Helleborus atrorubens Waldst. et Kit,” Journal of Pharmaceutical and Biomedical Analysis, vol. 24, no. 3, pp. 353–359, 2001.
[19]  L. R. Fukumoto and G. Mazza, “Assessing antioxidant and prooxidant activities of phenolic compounds,” Journal of Agricultural and Food Chemistry, vol. 48, no. 8, pp. 3597–3604, 2000.
[20]  S. Burda and W. Oleszek, “Antioxidant and antiradical activities of flavonoids,” Journal of Agricultural and Food Chemistry, vol. 49, no. 6, pp. 2774–2779, 2001.
[21]  P. Gulewicz, C. Martínez-Villaluenga, J. Frias, D. Ciesio?ka, K. Gulewicz, and C. Vidal-Valverde, “Effect of germination on the protein fraction composition of different lupin seeds,” Food Chemistry, vol. 107, no. 2, pp. 830–844, 2008.
[22]  G. Urbano, P. Aranda, A. Vílchez et al., “Effects of germination on the composition and nutritive value of proteins in Pisum sativum, L,” Food Chemistry, vol. 93, no. 4, pp. 671–679, 2005.
[23]  S. Jood, U. Mehta, R. Singh, and C. M. Bhat, “Effect of processing on flatus-producing factors in legumes,” Journal of Agricultural and Food Chemistry, vol. 33, no. 2, pp. 268–271, 1985.
[24]  H. A. Oboh, M. Muzquiz, C. Burbano et al., “Effect of soaking, cooking and germination on the oligosaccharide content of selected Nigerian legume seeds,” Plant Foods for Human Nutrition, vol. 55, no. 2, pp. 97–110, 2000.
[25]  B. J. Xu and S. K. C. Chang, “A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents,” Journal of Food Science, vol. 72, no. 2, pp. S159–S166, 2007.
[26]  E. Tsaliki, V. Lagouri, and G. Doxastakis, “Evaluation of the antioxidant activity of lupin seed flour and derivatives (Lupinus albus ssp. Graecus),” Food Chemistry, vol. 65, no. 1, pp. 71–75, 1999.
[27]  M. Muzquiz, C. Cuadrado, G. Ayet, L. Robredo, M. Pedrosa, and C. Burbano, “Changes in non-nutrient compounds during germination,” in Effeccts of Antinutritional Value of Legume Diets, S. Bardocz, E. Gelencsér, and A. Pusztai, Eds., vol. 1, pp. 124–129, Budapest, Hungary, 1996.
[28]  R. A. Oloyo, “Chemical and nutritional quality changes in germinating seeds of Cajanus cajan L.,” Food Chemistry, vol. 85, no. 4, pp. 497–502, 2004.
[29]  P. Stratil, B. Klejdus, and V. Kubáň, “Determination of total content of phenolic compounds and their antioxidant activity in vegetables—evaluation of spectrophotometric methods,” Journal of Agricultural and Food Chemistry, vol. 54, no. 3, pp. 607–616, 2006.
[30]  N. E. Rocha-Guzmán, A. Herzog, R. F. González-Laredo, F. J. Ibarra-Pérez, G. Zambrano-Galván, and J. A. Gallegos-Infante, “Antioxidant and antimutagenic activity of phenolic compounds in three different colour groups of common bean cultivars (Phaseolus vulgaris),” Food Chemistry, vol. 103, no. 2, pp. 521–527, 2007.
[31]  A. E. Hagerman, K. M. Riedl, G. A. Jones et al., “High molecular weight plant polyphenolics (Tannins) as biological antioxidants,” Journal of Agricultural and Food Chemistry, vol. 46, no. 5, pp. 1887–1892, 1998.
[32]  F. Yamaguchi, Y. Yoshimura, H. Nakazawa, and T. Ariga, “Free radical scavenging activity of grape seed extract and antioxidants by electron spin resonance spectrometry in an H2O2/NaOH/DMSO system,” Journal of Agricultural and Food Chemistry, vol. 47, no. 7, pp. 2544–2548, 1999.
[33]  N. S. C. de Gaulejac, C. Provost, and N. Vivas, “Comparative study of polyphenol scavenging activities assessed by different methods,” Journal of Agricultural and Food Chemistry, vol. 47, no. 2, pp. 425–431, 1999.
[34]  A. S. Meyer, M. Heinonen, and E. N. Frankel, “Antioxidant interactions of catechin, cyanidin, caffeic acid, quercetin, and ellagic acid on human LDL oxidation,” Food Chemistry, vol. 61, no. 1-2, pp. 71–75, 1998.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133