全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Experimental Investigations of a Krypton Stationary Plasma Thruster

DOI: 10.1155/2013/686132

Full-Text   Cite this paper   Add to My Lib

Abstract:

Stationary plasma thrusters are attractive electric propulsion systems for spacecrafts. The usual propellant is xenon. Among the other suggested propellants, krypton could be one of the best candidates. Most studies have been carried out with a Hall effect thruster previously designed for xenon. The ATON A-3 developed by MSTU MIREA (Moscow) initially defined for xenon has been optimized for krypton. The stable high-performance ATON A-3 operation in Kr has been achieved after optimization of its magnetic field configuration and its optimization in different parameters: length and width of the channel, buffer volume dimensions, mode of the cathode operation, and input parameters. For a voltage of 400?V and the anode mass flow rate of 2.5?mg/s the anode efficiency reaches 60% and the specific impulse reaches 2900?s under A-3 operating with Kr. The achieved performances under operation A-3 with Kr are presented and compared with performances obtained with Xe. 1. Introduction Hall effect thruster (HET, also named electron drift thrusters or Stationary Plasma Thrusters—SPT or PPS) is currently considered as the most efficient propulsion device for station-keeping of geostationary satellite for telecommunication. In this electrostatic plasma thruster, positive ions are created in an annular channel by inelastic collisions between neutral atoms and electrons emitted by an external hollow cathode. This process requires electron trapping in the channel by a radial magnetic field which is generated by a set of external magnetic coils or by permanent magnets. The ions are accelerated from the thruster by an axial electric field which is generated by a decrease of the electron mobility controlled by the magnetic field. But in the range of values of electron and ion parameters, only the electrons are magnetized (electron Larmor radius channel size ion Larmor radius). The first electric thruster in space was a FEEP (Field Emission Electric Propulsion) on board the ZOND2 soviet satellite in 1964 and the first SPT was tested in space in 1972 on the Soviet Meteor meteorological satellite. Now, more than 300 SPTs have been used on-board geostationary satellites for telecommunications. Moreover, a PPS1350 Hall effect thruster from Snecma-Group SAFRAN (France) has been used with success for primary propulsion on the SMART-1 interplanetary mission. This European mission arrived on a Lunar orbit (2003-2004) with only 80?kg of xenon propellant. This very low consumption is due to the high velocity of the ejected ions in HET thruster (15–20?km s?1) giving a high specific

References

[1]  A. Kieckhafer and L. B. King, “Energetics of propellant options for high-power Hall thrusters,” in Proceedings of the Space Nuclear Conference, 2011.
[2]  V. Kim, G. Popov, V. Kozlov, A. Skrylnikov, and D. Grdlikhko, “Investigation of SPT performances and particularities of its operation with Kr/Xe mixtures,” in Proceeding of the 27th International Electric Propulsion Conference (IEPC '01), 2001, AIAA 96-2969.
[3]  W. A. Hargus, G. M. Azarnia, and M. R. Nakles, “Demonstration of laser-induced fluorescence on a krypton Hall effect thruster,” in Proceedings of the 32nd International Electric Propulsion Conference (IEPC '01), IEPC-2011-018, Wiesbaden, Germany, September 2011.
[4]  M. R. Nakles, W. A. Hargus, J. J. Delgado, and R. L. Corey, “A comparison of xenon and krypton propellant on an SPT-100 Hall thruster,” in Proceedings of the 32nd International Electric Propulsion Conference (IEPC '01), IEPC-2011-003, p. 15, Wiesbaden, Germany, September 2011.
[5]  S. Mazouffre, K. Dannenmayer, G. Bourgeois, and A. Lejeune A, “Performances of a variable channel width Hall thruster operating with Xenon and Krypton,” in Proceedings of the Space Propulsion Conférence (SP '12), pp. 7–10, Bordeaux, France, May 2012.
[6]  J. Kurzyna and D. Danilko, “IPPLM Hall effect thruster—design guidelines and preliminary tests,” in Proceedings of the 32nd International Electric Propulsion Conference, IEPC-2011-221, pp. 11–15, Wiesbaden, Germany, September 2011.
[7]  ScienceDaily, Krypton Hall Effect Thruster for Spacecraft Propulsion, http://www.sciencedaily.com/releases/2011/10/111006084023.htm.
[8]  A. I. Morozov, A. I. Bugrova, and A. V. Desyatskov, “ATON-thruster plasma accelerator,” Plasma Physics Reports, vol. 23, no. 7, pp. 587–597, 1997.
[9]  A. I. Bugrova, A. S. Lipatov, A. I. Morozov, and D. V. Churbanov, “On a similarity criterion for plasma accelerators of the stationary plasma thruster type,” Technical Physics Letters, vol. 28, no. 10, pp. 821–823, 2002.
[10]  A. I. Bugrova, A. S. Lipatov, A. I. Morozov, and L. V. Solomatina, “Global characteristics of an ATON stationary plasma thruster operating with krypton and xenon,” Plasma Physics Reports, vol. 28, no. 12, pp. 1032–1037, 2002.
[11]  A. I. Bugrova, A. V. Desyatskov, A. S. Lipatov et al., “Experimental study of ATON stationary plasma thrusters,” Plasma Physics Reports, vol. 36, no. 4, pp. 365–370, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133