The biologically inspired concept of hidden genes has been recently introduced in genetic algorithms to solve optimization problems where the number of design variables is variable. In multigravity-assist trajectories, the hidden genes genetic algorithms demonstrated success in searching for the optimal number of swing-bys and the optimal number of deep space maneuvers. Previous investigations in the literature for multigravity-assist trajectory planning problems show that the standard differential evolution is more effective than the standard genetic algorithms. This paper extends the concept of hidden genes to differential evolution. The hidden genes differential evolution is implemented in optimizing multigravity-assist space trajectories. Case studies are conducted, and comparisons to the hidden genes genetic algorithms are presented in this paper. 1. Introduction A fundamental step in the planning of interplanetary space missions is the design of the spacecraft trajectory. The multigravity-assist trajectory with deep space maneuvers (MGADSMs) is a trajectory that benefits from the gravitational fields of other planets to attain a free momentum change, by performing swing-bys around the planets. MGADSM trajectories can also use impulsive thrust to apply deep space maneuvers (DSMs) as needed. A criterion that is usually used in designing the MGADSM trajectory is to find the MGADSM trajectory that has minimum fuel expenditure. Designing the MGADSM trajectory is then formulated as an optimization problem. The design parameters that need to be optimized are the number of swing-bys, the planets to swing by, the times of swing-bys, the number of DSMs, the components and directions of these DSMs, the times at which these DSMs are applied, and the exact launch and arrival dates. This optimization problem, in its general form, is a variable-length optimization problem where the number of design variables is a variable. For instance, one solution may have 2 DSMs, and another solution for the same problem may have 3 DSMs. The number of design variables is different in both cases. The different number of swing-bys also causes the number of design variables to vary among different solutions. Several optimization approaches have been proposed to solve the MGADSM trajectory design problem. Reference [1] developed a deterministic search space pruning algorithm to search for the optimal solution for a simplified version of the problem. When the gravity-assist sequence (i.e., the number of swing-bys and the planets to swing by) is known a priori, and assuming no
References
[1]
D. Izzo, V. M. Becerra, D. R. Myatt, S. J. Nasuto, and J. M. Bishop, “Search space pruning and global optimisation of multiple gravity assist spacecraft trajectories,” Journal of Global Optimization, vol. 38, no. 2, pp. 283–296, 2007.
[2]
J. T. Olympio and J. P. Marmorat, “Global trajectory optimisation: can we prune the solution space when considering deep space maneuvers?” Final Report, European Space Agency, 2007.
[3]
J. T. Olympio, “Designing optimal multi-gravity-assist trajectories with free number of impulses,” in Proceedings of the 21st International Symposium on Space Flight Dyncamics, Toulouse, France, 2009.
[4]
M. Vasile and P. de Pascale, “Preliminary design of multiple gravity-assist trajectories,” Journal of Spacecraft and Rockets, vol. 43, no. 4, pp. 794–805, 2006.
[5]
M. Ceriotti and M. Vasile, “Automated multigravity assist trajectory planning with a modified ant colony algorithm,” Journal of Aerospace Computing, Information and Communication, vol. 7, no. 9, pp. 261–293, 2010.
[6]
A. D. Olds, C. A. Kluever, and M. L. Cupples, “Interplanetary mission design using differential evolution,” Journal of Spacecraft and Rockets, vol. 44, no. 5, pp. 1060–1070, 2007.
[7]
Y. H. Kim and D. B. Spencer, “Optimal spacecraft rendezvous using genetic algorithms,” Journal of Spacecraft and Rockets, vol. 39, no. 6, pp. 859–865, 2002.
[8]
H. Kim, O. Jung, and H. Bang, “A computational approach to reduce the revisit time using a genetic algorithm,” in Proceedings of the International Conference on Control, Automation and Systems (ICCAS '07), pp. 184–189, Seoul, Republic of Korea, October 2007.
[9]
O. Abdelkhalik and D. Mortari, “Orbit design for ground surveillance using genetic algorithms,” Journal of Guidance, Control, and Dynamics, vol. 29, no. 5, pp. 1231–1235, 2006.
[10]
T. A. Ely, W. A. Crossley, and E. A. Williams, “Satellite constellation design for zonal coverage using genetic algorithms,” Journal of the Astronautical Sciences, vol. 47, no. 3-4, pp. 207–228, 1999.
[11]
G. A. Rauwolf and V. L. Coverstone-Carroll, “Near-optimal low-thrust orbit transfers generated by a genetic algorithm,” Journal of Spacecraft and Rockets, vol. 33, no. 6, pp. 859–862, 1996.
[12]
O. Abdelkhalik, “Hidden genes genetic optimization for variable-size design space problems,” Journal of Optimization Theory and Applications, vol. 156, no. 2, pp. 450–468, 2013.
[13]
A. Gad and O. Abdelkhalik, “Hidden genes genetic algorithm for multi-gravity-assist trajectories optimization,” AIAA Journal of Spacecraft and Rockets, vol. 48, no. 4, pp. 629–641, 2011.
[14]
O. Abdelkhalik, “Multi-gravity-assist trajectories optimization: comparison between the hidden genes and the dynamic-size multiple populations genetic algorithms,” in Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, No. AAS11-620, Girdwood, Alaska, USA, July-August 2011.
[15]
M. Vasile, E. Minisci, and M. Locatelli, “Analysis of some global optimization algorithms for space trajectory design,” Journal of Spacecraft and Rockets, vol. 47, no. 2, pp. 334–344, 2010.
[16]
D. Izzo, Spacecraft Trajectory Optimization, vol. 29, chapter 7, Cambridge University Press, New York, NY, USA, 1st edition, 2010.
[17]
M. Vasile and M. Ceriotti, Spacecraft Trajectory Optimization, vol. 29, chapter 8, Cambridge University Press, New York, NY, USA, 1st edition, 2010.
[18]
O. Abdelkhalik and A. Gad, “Dynamic-size multiple populations genetic algorithm for multigravity-assist trajectories optimization,” Journal of Guidance, Control, and Dynamics, vol. 35, no. 2, pp. 520–529, 2012.
[19]
J. Zhang and A. C. Sanderson, Adaptive Differential Evolution, a Robust Approach to Multimodal Problem Optimization, vol. 1 of Adaptation, Learning, and Optimization, Springer, Berlin, Germany, 2009.
[20]
K. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution: A Practical Approach to Global Optimization, Natural Computing Series, Springer, Berlin, Germany, 2005.
[21]
B. Starr, “Spooled DNA and hidden genes: the latest finding in how our DNA is organized and read,” The Tech Museum of Innovation, Department of Genetics, Stanford School of MedicineSan Jose, Calif, USA, http://www.thetech.org/genetics/news.php?id=31.
[22]
M. Vasile, E. Minisci, and M. Locatelli, “An inflationary differential evolution algorithm for space trajectory optimization,” IEEE Transactions on Evolutionary Computation, vol. 15, no. 2, pp. 267–281, 2011.
[23]
K. Clark, J. Boldt, R. Greeley et al., “Return to Europa: overview of the jupiter Europa orbiter mission,” Advances in Space Research, vol. 48, no. 4, pp. 629–650, 2011.
[24]
T. Sweetser, T. R. Maddock, J. Johannesen et al., “Trajectory design for a Europa orbiter mission: a plethora of astrodynamic challenges,” in Proceedings of the AAS/AIAA Space Flight Mechanics Meeting, Plethora of Astrodynamic Challenges, Paper No. AAS 97-174, pp. 97–174, 1997.
[25]
European Space Agency, “GTOP act trajectory database,” 2009, http://www.esa.int/gsp/ACT/inf/projects/gtop/gtop.html.
[26]
D. Beasley, D. R. Bull, and R. R. Martin, “A sequential niche technique for multimodal function optimization,” Evolutionary Computation, vol. 1, no. 2, pp. 101–125, 1993.