We developed a Global Model for N2O plasmas valid for applications in various power, gas flow rate, and pressure regimes. Besides energy losses from electron collisions with N2O, it takes into consideration those due to molecular N2 and O2 and to atomic N and O species. Positive atomic N+ and O+ and molecular N2O+, , and have been treated as separate species and also negative O? ions. The latter confer an electronegative character to the discharge, calling for modified plasma sheath and plasma potential formulas. Electron density and temperature and all species densities have been evaluated, hence the ionization and dissociation percentages of N2O, N2, and O2 molecules and the plasma electronegativity. The model is extended to deal with N2/O2 mixtures feedings, notably with air. Rate coefficients and model results are discussed and compared with those from available theoretical and experimental work on ICP and glow discharge devices. 1. Introduction The present work aims to characterize N2O fed plasma devices working in various configurations, as plasma reactors, hollow cathodes, and plasma thrusters, by means of a Global (volume averaged) Model (GM). The well-known GM describes a plasma device in its entirety, taking into consideration the atomic and molecular properties of the used gas or mixtures, together with the device geometry and the prevailing physical conditions. Examples and general properties of such models can be found in standard handbooks [1]. Obviously, the problem of N2O plasmas description becomes more complex than in the case of a monoatomic inert gas as the argon, studied previously for inductively coupled plasmas (ICP) including plasma reactor (PR) and for helicon plasma thruster (HPT) applications, by means of an adequate GM (see [2] and references therein). In [2] the HPT plasma was separated in two regions, an external, cooler region encompassing about 90% of the plasma cross section area with low ionization percentage named the “mantle” region and an internal hotter one, the “core” region, where the plasma is mostly ionized. Conditions in the “mantle” region are rather similar to those of the PR, both for Ar and for N2O and N2/O2 mixtures feedings. In the present paper only ICP and glow discharge (GD) results are given, which are also useful in modeling the “mantle” region of HPT. The molecular structure of the N2O and that of the molecular products examined here reveal vibrationally excited states that have to be taken into account in addition to the electronic ones. Because of the presence of molecular species, the
References
[1]
M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, John Wiley & Sons, Hoboken, NJ, USA, 2nd edition, 2005.
[2]
Ch. Berenguer and K. Katsonis, “Plasma reactors and plasma thrusters modeling by Ar complete global models,” International Journal of Aerospace Engineering, vol. 2012, Article ID 740869, 18 pages, 2012.
[3]
A. T. Hjartarson, E. G. Thorsteinsson, and J. T. Gudmundsson, “Low pressure hydrogen discharges diluted with argon explored using a global model,” Plasma Sources Science and Technology, vol. 19, no. 6, Article ID 065008, 2010.
[4]
K. Katsonis and Ch. Berenguer, “A complete global model for He Torch experiments and atmospheric entry study,” in Proceedings of the ESA 5th International Workshop Radiation of High Temperature Gases in Atmospheric Entry, Barcelona, Spain, October 2012.
[5]
Ch. Berenguer and K. Katsonis, “Modeling and diagnostics of H/He mixture high temperature space plasmas,” in Proceedings of the ESA 5th International Workshop Radiation of High Temperature Gases in Atmospheric Entry, Barcelona, Spain, October 2012.
[6]
D. Vacher, S. Menecier, M. Dudeck, Ch. Berenguer, and K. Katsonis, “Optical diagnostics of an helium plasma formed with an inductively coupled plasma torch,” in Proceedings of the ESA 5th International Workshop Radiation of High Temperature Gases in Atmospheric Entry, Barcelona, Spain, October 2012.
[7]
D. A. Shutov, S.-Y. Kang, K.-H. Baek, K.-S. Suh, and K.-H. Kwon, “Inductively-coupled nitrous-oxide plasma etching of parylene-C films,” Journal of the Korean Physical Society, vol. 55, no. 5, pp. 1836–1840, 2009.
[8]
F. B. Yousif and A. B. Mondragon, “An investigation into electron temperature, number density, and optical emission spectroscopy of the DC hollow-cathode plasma discharge in N2O,” IEEE Transactions on Plasma Science, vol. 40, no. 6, pp. 1715–1723, 2012.
[9]
C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Science and Technology, vol. 12, no. 2, pp. 125–138, 2003.
[10]
T. de los Arcos, C. Domingo, V. J. Herrero, M. M. Sanz, A. Schulz, and I. Tanarro, “Diagnostics and kinetic modeling of a hollow cathode N2O discharge,” Journal of Physical Chemistry A, vol. 102, no. 31, pp. 6282–6291, 1998.
[11]
B. F. Gordiets, C. M. Ferreira, V. L. Guerra et al., “Kinetic model of a low-pressure N2-O2 flowing glow discharge,” IEEE Transactions on Plasma Science, vol. 23, no. 4, pp. 750–768, 1995.
[12]
E. G. Thorsteinsson and J. T. Gudmundsson, “A global (volume averaged) model of a nitrogen discharge: I. Steady state,” Plasma Sources Science and Technology, vol. 18, no. 4, Article ID 045001, 2009.
[13]
K. Katsonis, S. Pellerin, and K. Dzierzega, “Collisional-radiative type modelling and application in plasma diagnostics,” High Temperature Material Processes, vol. 7, no. 4, pp. 559–568, 2003.
[14]
J. T. Gudmundsson, I. G. Kouznetsov, K. K. Patel, and M. A. Lieberman, “Electronegativity of low-pressure high-density oxygen discharges,” Journal of Physics D, vol. 34, no. 7, pp. 1100–1109, 2001.
[15]
J. T. Gudmundsson and E. G. Thorsteinsson, “Oxygen discharges diluted with argon: dissociation processes,” Plasma Sources Science and Technology, vol. 16, no. 2, pp. 399–412, 2007.
[16]
Ch. Berenguer and K. Katsonis, “Global modeling of N2 plasmas,” Tech. Rep. DEDALOS 2012-08, 2012.
[17]
N. Kang, F. Gaboriau, S.-G. Oh, and A. Ricard, “Modeling and experimental study of molecular nitrogen dissociation in an Ar–N2 ICP discharge,” Plasma Sources Science and Technology, vol. 20, no. 4, Article ID 045015, 2011.
[18]
Ch. Berenguer and K. Katsonis, “Global modeling of O2 plasmas,” Tech. Rep. DEDALOS 2012-12, 2012.
[19]
C. S. Corr, S. Gomez, and W. G. Graham, “Discharge kinetics of inductively coupled oxygen plasmas: experiment and model,” Plasma Sources Science and Technology, vol. 21, no. 5, Article ID 055024, 2012.
[20]
E. G. Thorsteinsson and J. T. Gudmundsson, “A global (volume averaged) model of a chlorine discharge,” Plasma Sources Science and Technology, vol. 19, no. 1, Article ID 015001, 2010.
[21]
C. Lee and M. A. Lieberman, “Global model of Ar, O2, Cl2, and Ar/O2 high-density plasma discharges,” Journal of Vacuum Science and Technology A, vol. 13, no. 2, pp. 368–380, 1995.
[22]
A. V. Phelps, “Cross sections and swarm coefficients for nitrogen ions and neutrals in N2 and argon ions and neutrals in Ar for energies from 0. 1 eV to 10 keV,” Journal of Physical and Chemical Reference Data, vol. 20, no. 3, p. 557, 1991.
[23]
L. Date, K. Radouane, B. Despax, M. Yousfi, H. Caquineau, and A. Hennad, “Analysis of the N2O dissociation in a RF discharge reactor,” Journal of Physics D, vol. 32, no. 13, pp. 1478–1488, 1999.
[24]
P. C. Cosby, “Electron-impact dissociation of nitrogen,” The Journal of Chemical Physics, vol. 98, no. 12, pp. 9544–9559, 1993.
[25]
Y.-K. Kim, W. Hwang, N. M. Weinberger, M. A. Ali, and M. E. Rudd, “Electron-impact ionization cross sections of atmospheric molecules,” Journal of Chemical Physics, vol. 106, no. 3, pp. 1026–1033, 1997.
[26]
S. Dupljanin, J. de Urquijo, O. ?a?i? et al., “Transport coefficients and cross sections for electrons in N2O and N2O/N2 mixtures,” Plasma Sources Science and Technology, vol. 19, no. 2, Article ID 025005, 2010.
[27]
D. Rapp and P. Englander-Golden, “Total cross sections for lonization and attachment in gases by electron impact. I. Positive ionization,” The Journal of Chemical Physics, vol. 43, no. 5, pp. 1464–1479, 1965.
[28]
I. Iga, M. V. V. S. Rao, and S. K. Srivastava, “Absolute electron impact ionization cross sections for N2O and NO from threshold up to 1000 eV,” Journal of Geophysical Research E, vol. 101, no. 4, pp. 9261–9266, 1996.
[29]
L. G. Christophorou and J. K. Olthoff, “Electron interactions with excited atoms and molecules,” Advances in Atomic, Molecular and Optical Physics, vol. 44, pp. 155–293, 2001.
[30]
L. Campbell, M. J. Brunger, A. M. Nolan et al., “Integral cross sections for electron impact excitation of electronic states of N2,” Journal of Physics B, vol. 34, no. 7, pp. 1185–1199, 2001.
[31]
A. V. Phelps and L. C. Pitchford, “Anisotropic scattering of electrons by N2 and its effect on electron transport,” Physical Review A, vol. 31, no. 5, pp. 2932–2949, 1985.
[32]
Y.-K. Kim and J.-P. Desclaux, “Ionization of carbon, nitrogen, and oxygen by electron impact,” Physical Review A, vol. 66, no. 1, Article ID 012708, 12 pages, 2002.
[33]
Y. Itikawa, “Cross sections for electron collisions with nitrogen molecules,” Journal of Physical and Chemical Reference Data, vol. 35, no. 1, pp. 31–53, 2006.
[34]
M. Allan, “Excitation of vibrational levels up to ν=17 in N2 by electron impact in the 0-5 eV region,” Journal of Physics B, vol. 18, no. 22, pp. 4511–4517, 1985.
[35]
J. B. Hasted, Physics of Atomic Collisions, Butterworth, London, UK, 2nd edition, 1972.
[36]
R. H. Neynaber, L. L. Marino, E. W. Rothe, and S. M. Trujillo, “Low-energy electron scattering from atomic nitrogen,” Physical Review, vol. 129, no. 5, pp. 2069–2071, 1963.
[37]
C. Tian and C. R. Vidal, “Electron impact ionization of N2 and O2: contributions from different dissociation channels of multiply ionized molecules,” Journal of Physics B, vol. 31, no. 24, pp. 5369–5381, 1998.
[38]
T. A. Cleland and D. W. Hess, “Diagnostics and modeling of N2O RF glow discharges,” Journal of the Electrochemical Society, vol. 136, no. 10, pp. 3103–3111, 1989.
[39]
P. Gamallo, M. González, and R. Sayós, “Ab initio derived analytical fits of the two lowest triplet potential energy surfaces and theoretical rate constants for the N(4S) + NO(X2II) system,” Journal of Chemical Physics, vol. 119, no. 5, pp. 2545–2556, 2003.
[40]
I. A. Kossyi, A. Y. Kostinsky, A. A. Matveyev, and V. P. Silakov, “Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures,” Plasma Sources Science and Technology, vol. 1, no. 3, pp. 207–220, 1992.
[41]
D. D. Monahan and M. M. Turner, “Global models of electronegative discharges: critical evaluation and practical recommendations,” Plasma Sources Science and Technology, vol. 17, no. 4, Article ID 045003, 2008.
[42]
L. G. Christophorou and J. K. Olthoff, Fundamental Electron Interactions With Plasma Processing Gases, Kluwer Academic/Plenum Publishers, New York, NY, USA, 2004.
[43]
K. Katsonis, Etude statistique et cinétique des plasmas d’Argon en dehors de l’equilibre thermodynamique local [Doctorat d’Etat], Université Paris-sud, Fontenay-aux-Roses, France, 1976, EUR-CEA-FC-820.
[44]
E. L. Chaney and L. G. Christophorou, “Electron attachment to N2O,” The Journal of Chemical Physics, vol. 51, no. 3, pp. 883–892, 1969.
[45]
G. Younis, B. Despax, M. Yousfi, and H. Caquineau, “Power dissipation analysis in N2O RF discharges using Monte Carlo modelling,” Journal of Physics D, vol. 40, no. 7, pp. 2045–2054, 2007.
[46]
R. Atkinson, D. L. Baulch, R. A. Cox et al., “Evaluated kinetic and photochemical data for atmospheric chemistry: supplement VIII, halogen species a IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry,” Journal of Physical and Chemical Reference Data, vol. 21, no. 6, p. 1125, 1992.
[47]
J. T. Gudmundsson and M. A. Lieberman, “Recombination rate coefficients in oxygen discharges,” Tech. Rep. RH-16-2004, Science Institute, University of Iceland, 2004.
[48]
P. B. Armentrout, S. M. Tarr, A. Dori, and R. S. Freund, “Electron impact ionization cross section of metastable N2(A∑+u),” The Journal of Chemical Physics, vol. 75, no. 6, pp. 2786–2794, 1981.
[49]
H. C. Straub, P. Renault, B. G. Lindsay, K. A. Smith, and R. F. Stebbings, “Absolute partial cross sections for electron-impact ionization of H2, N2, and O2 from threshold to 1000 eV,” Physical Review A, vol. 54, no. 3, pp. 2146–2153, 1996.
[50]
M. J. Brunger, S. J. Buckman, and M. T. Elford, Photon and Electron Interactions with Atoms, Molecules and Ions, vol. 17 of Numerical Data and Functional Relationships in Science and Technology, Landolt-B?rnstein, Spinger, New York, NY, USA, 2003, Edited by: Y. Itikawa.
[51]
T. F. O’Malley, “Calculation of dissociative attachment in hot O2,” Physical Review, vol. 155, no. 1, pp. 59–63, 1967.
[52]
W. R. Henderson, W. L. Fite, and R. T. Brackmann, “Dissociative attachment of electrons to hot oxygen,” Physical Review, vol. 183, no. 1, pp. 157–166, 1969.
[53]
J. T. Gudmundsson, A. M. Marakhtanov, K. K. Patel, V. P. Gopinath, and M. A. Lieberman, “On the plasma parameters of a planar inductive oxygen discharge,” Journal of Physics D, vol. 33, no. 11, pp. 1323–1331, 2000.
[54]
D. A. Hayton and B. Peart, “Merged beam measurements of the mutual neutralization of O+/O- and N+/O- ions,” Journal of Physics B, vol. 26, p. 2879, 1993.
[55]
R. Padgett and B. Peart, “Merged-beam measurements of the mutual neutralization of /O- and NO+/O- ions,” Journal of Physics B, vol. 31, no. 24, pp. L995–L1000, 1998.
[56]
A. G. Engelhardt, A. V. Phelps, and C. G. Risk, “Determination of momentum transfer and inelastic collision cross sections for electrons in nitrogen using transport coefficients,” Physical Review, vol. 135, no. 6, pp. A1566–A1574, 1964.
[57]
S. Kim, M. A. Lieberman, A. J. Lichtenberg, and J. T. Gudmundsson, “Improved volume-averaged model for steady and pulsed-power electronegative discharges,” Journal of Vacuum Science and Technology A, vol. 24, no. 6, pp. 2025–2040, 2006.
[58]
J. T. Gudmundsson, “Notes on the electron excitation rate coefficients for Argon and Oxygen discharge,” Tech. Rep. RH-21-2002, Reykjavik, Iceland, 2002.
[59]
Ch. Berenguer, K. Katsonis, and C. Boisse-Laporte, “Study of PR plasmas obtained by gas mixtures feeding,” Tech. Rep. DEDALOS 2013-02, 2013.
[60]
Ch. Berenguer, K. Katsonis, and D. Pavarin, “The resonant lines VUV transitions in rare gas plasma thrusters,” in Proceedings of the 32nd International Electric Propulsion Conference (IEPC '11), Wiesbaden, Germany, September 2011.
[61]
C. P. Malone, P. V. Johnson, J. W. McConkey, J. M. Ajello, and I. Kanik, “Dissociative excitation of N2O by electron impact,” Journal of Physics B, vol. 41, no. 9, Article ID 095201, 2008.
[62]
K. Katsonis, Ch. Berenguer, D. Pavarin, et al., “Optical diagnostics of a low temperature argon thruster,” in Proceedings of the 32nd International Electric Propulsion Conference (IEPC '11), Wiesbaden, Germany, September 2011.
[63]
Ch. Berenguer, K. Katsonis, D. Vacher et al., “Spectroscopic study of a neon fed ICP torch,” in Proceedings of the 10th European Conference on Atoms Molecules and Photons (ECAMP X '10), Salamanca, Spain, July 2010.
[64]
D. Pavarin, F. Ferri, M. Manente, et al., “Thruster development set-up for the helicon plasma hydrazine combined micro research project,” in Proceedings of the 32nd International Electric Propulsion Conference (IEPC '11), Wiesbaden, Germany, September 2011.
[65]
C. Charles and R. W. Boswell, “Measurement and modelling of a radiofrequency micro-thruster,” Plasma Sources Science and Technology, vol. 21, no. 2, Article ID 022002, 2012.