全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Wind Tunnel Testing on Start/Unstart Characteristics of Finite Supersonic Biplane Wing

DOI: 10.1155/2013/231434

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study describes the start/unstart characteristics of a finite and rectangular supersonic biplane wing. Two wing models were tested in wind tunnels with aspect ratios of 0.75 (model A) and 2.5 (model B). The models were composed of a Busemann biplane section. The tests were carried out using supersonic and transonic wind tunnels over a Mach number range of with angles of attack of 0°, 2°, and 4°. The Schlieren system was used to observe the flow characteristics around the models. The experimental results showed that these models had start/unstart characteristics that differed from those of the Busemann biplane (two dimensional) owing to three-dimensional effects. Models A and B started at lower Mach numbers than the Busemann biplane. The characteristics also varied with aspect ratio: model A ( ) started at a lower Mach number than model B ( ) owing to the lower aspect ratio. Model B was located in the double solution domain for the start/unstart characteristics at , and model B was in either the start or unstart state at . Once the state was determined, either state was stable. 1. Introduction A sonic boom is caused by shock waves and expansion waves generated by a supersonic aircraft. As the sonic boom generates an impulsive noise at the ground, it produces undesirable effects on not only people but also animals and architecture. Sonic boom mitigation is thus required for the development of supersonic commercial aircraft [1, 2], and extensive studies have been carried out regarding this [3, 4]. Recently, Kusunose et al. proposed the supersonic biplane theory [5–8] as a method of sonic boom mitigation. This theory enables significant reduction if not complete elimination of shock waves and expansion waves by the wave reduction and wave cancellation effects of a biplane configuration. The concept of a Busemann biplane, which was first proposed by Busemann in 1935 [9, 10], forms the basis of supersonic biplane theory. Figure 1 shows the Busemann biplane (two dimensional) in a supersonic flow; this biplane consists of two half-diamond airfoils facing each other. Figure 1(a) shows the start state: compression (shock) waves generated from the leading edge of the elements are canceled by an expansion wave at the shoulder; the wave drag due to thickness is reduced significantly by the mutual cancellation of waves. Thus, the waves propagating outside the elements can be eliminated. Figure 1(b) shows the unstart state: a curved bow shock forms in front of the elements owing to the choked-flow phenomenon; the wave drag increases greatly. Naturally, a strong

References

[1]  A. R. George and R. Seebass, “Sonic boom minimization including both front and rear shocks,” AIAA Journal, vol. 9, no. 10, pp. 2091–2093, 1971.
[2]  C. M. Darden, “Sonic boom theory: its status in prediction and minimization,” Journal of Aircraft, vol. 14, no. 6, pp. 569–576, 1977.
[3]  K. J. Plotkin, “State of the art of sonic boom modeling,” Journal of the Acoustical Society of America, vol. 111, no. 1, part 2, pp. 530–536, 2002.
[4]  J. J. Alonso and M. R. Colonno, “Multidisciplinary optimization with applications to sonic-boom minimization,” Annual Review of Fluid Mechanics, vol. 44, pp. 505–526, 2011.
[5]  K. Kusunose, “A new concept in the development of boomless supersonic transport,” in Proceedings of the 1st International Conference on Flow Dynamics, pp. 46–47, Sendai, Japan, November 2004.
[6]  K. Kusunose, K. Matsushima, Y. Goto et al., “A fundamental study for the development of boomless supersonic transport aircraft,” AIAA Paper 2006-0654, 2006.
[7]  K. Kusunose, K. Matsushima, S. Obayashi et al., Aerodynamic Design of Supersonic Biplane: Cutting Edge and Related Topics, vol. 5 of The 21st Century COE Program International COE of Flow Dynamics Lecture Series, Tohoku University Press, Sendai, Japan.
[8]  K. Kusunose, K. Matsushima, and D. Maruyama, “Supersonic biplane—a review,” Progress in Aerospace Sciences, vol. 47, no. 1, pp. 53–87, 2011.
[9]  A. Busemann, “Aerodynamic lift at supersonic speed,” Luftfahrtforschung, vol. 12, no. 6, pp. 210–220, 1935.
[10]  H. W. Liepmann and A. Roshko, Elements of Gas Dynamics, John Wiley & Sons, New York, NY, USA, 1957.
[11]  H. Yamashita, S. Obayashi, and K. Kusunose, “Reduction of drag penalty by means of plain flaps in the boomless busemann biplane,” International Journal of Emerging Multidisciplinary Fluid Sciences, vol. 1, no. 2, pp. 141–164, 2009.
[12]  D. Maruyama, K. Kusunose, and K. Matsushima, “Aerodynamic characteristics of a two-dimensional supersonic biplane, covering its take-off to cruise conditions,” Shock Waves, vol. 18, no. 6, pp. 437–450, 2009.
[13]  K. Matsushima, K. Kusunose, D. Maruyama, and T. Matsuzawa, “Numerical design and assessment of a biplane as future supersonic transport—revisiting busemann’s biplane,” in Proceedings of the 25th Congress of International Council of the Aeronautical Sciences (ICAS '06), CD-ROM Proceedings, pp. 1–10, Optimage Ltd., Hamburg, Germany, September 2006.
[14]  D. M. van Wie, F. T. Kwok, and R. F. Walsh, “Starting characteristics of supersonic inlet,” AIAA Paper 1996-2914, July 1996.
[15]  D. M. van Wie, M. E. White, and P. J. Waltrup, “Application of computational design techniques in the development of scramjet engines,” AIAA Paper 87-1420, June 1987.
[16]  D. M. van Wie and S. Molder, “Applications of busemann inlet designs for flight at hypersonic speeds,” AIAA Paper 92-1210, February 1992.
[17]  S. Molder and E. J. Szpiro, “Busemann inlet for hypersonic speeds,” Journal of Spacecraft and Rockets, vol. 3, no. 8, pp. 1303–1304, 1966.
[18]  M. H. Aksel and O. C. Eralp, Gas Dynamics, Chapter 5, Prentice Hall, Englewood Cliffs, Calif, USA, 1994.
[19]  N. Kuratani, T. Ogawa, H. Yamashita, M. Yonezawa, and S. Obayashi, “Experimental and computational fluid dynamics around supersonic biplane for sonic-boom reduction,” AIAA Paper 2007-3674, May 2007.
[20]  N. Kuratani, M. Yonezawa, H. Yamashita, S. Ozaki, T. Ogawa, and S. Obayashi, “Wing configuration effects on flow field and aerodynamic performance of supersonic biplane for sonic-boom reduction,” in Proceedings of the 26th Congress of International Council of the Aeronautical Sciences (ICAS '08), CD-ROM Proceedings, pp. 1–10, Optimage Ltd., Anchorage, Alaska, USA, September 2008.
[21]  “9-by 7-foot Supersonic Wind Tunnel,” May 2013, http://www.windtunnels.arc.nasa.gov/9x7ft1.html.
[22]  A. Pope and K. L. Goin, High-Speed Wind Tunnel Testing, Chapters 2, 8 and 10, Wiley, New York, NY, USA, 1965.
[23]  H. Yamashita, T. Fujisono, A. Toyoda et al., “Aerodynamic characteristics and effects of winglets of the boomless tapered supersonic biplane during the starting process,” Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, vol. 11, no. 1, pp. 17–26, 2013.
[24]  T. Irikado, K. Sato, and K. Fujii, “Transient loads and flow structures in the ISAS supersonic wind tunnel,” in Proceedings of 38th Fluid Dynamics Conference, pp. 259–262, Muroran, Japan, September 2006.
[25]  T. Irikado, K. Sato, and K. Fujii, “Transient flow in the ISAS supersonic wind tunnel,” in Proceedings of 40th Fluid Dynamics Conference/Aerospace Numerical Simulation Symposium, pp. 231–234, Sendai, Japan, June 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133