The radio-frequency (RF) field mapping and its analysis inside a space vehicle cabin, although of immense importance, represent a complex problem due to their inherent concavity. Further hybrid surface modeling required for such concave enclosures leads to ray proliferation, thereby making the problem computationally intractable. In this paper, space vehicle is modeled as a double-curvatured general paraboloid of revolution (GPOR) frustum, whose aft section is matched to an end-capped right circular cylinder. A 3D ray-tracing package is developed which involves a uniform ray-launching scheme, an intelligent scheme for ray bunching, and an adaptive reception algorithm for obtaining ray-path details inside the concave space vehicle. Due to nonavailability of image method for concave curvatured surfaces, the proposed ray-tracing method is validated with respect to the RF field build-up inside a closed lossy cuboid using image method. The RF field build-up within the space vehicle is determined using the details of ray paths and the material parameters. The results for RF field build-up inside a metal-backed dielectric space vehicle are compared with those of highly metallic one for parallel and perpendicular polarizations. The convergence of RF field within the vehicle is analyzed with respect to the propagation time and the number of bounces a ray undergoes before reaching the receiving point. 1. Introduction In the fore section of any space vehicle, astronauts work in the presence of multiple radiating sources. This makes the astronaut cabin of space vehicle an important indoor environment which necessitates RF field mapping. The space vehicle cabin is essentially a concave structure. Over the last decades, ray tracing has been employed for site-specific indoor propagation models [1–3], and it has been shown that multiple reflections are dominant for the RF field build-up within the cavity compared to the phenomenon of diffraction [4]. Although ray tracing has been used earlier for electromagnetic (EM) analysis of aircraft cabin-like enclosures, a closer scrutiny reveals that these predominantly employ measurements to merely fit their predictions or to validate their empirical models [5–7]. For EM environment analysis within the space shuttle interior (payload bay area), attempts have been made earlier to overcome the computational complexity by approximating the curved surfaces with large planar faceted plates [8]. However, this leads to a completely different ray solution set, which may not necessarily approximate to the case of curvatured surfaces
References
[1]
J. K. Chen, G. de Veciana, and T. S. Rappaport, “Site-specific knowledge and interference measurement for improving frequency allocations in wireless networks,” IEEE Transactions on Vehicular Technology, vol. 58, no. 5, pp. 2366–2377, 2009.
[2]
K. H. Ng, E. K. Tameh, and A. R. Nix, “A new heuristic geometrical approach for finding non-coplanar multiple edge diffraction ray paths,” IEEE Transactions on Antennas and Propagation, vol. 54, pp. 2669–2672, 2006.
[3]
Y. B. Ouattara, S. Mostarshedi, E. Richalot, J. Wiart, and O. Picon, “Near- and far-field models for scattering analysis of buildings in wireless communications,” IEEE Transactions on Antennas and Propagation, vol. 59, no. 11, pp. 4229–4238, 2011.
[4]
H. Suzuki and A. S. Mohan, “Measurement and prediction of high spatial resolution indoor radio channel characteristic map,” IEEE Transactions on Vehicular Technology, vol. 49, no. 4, pp. 1321–1333, 2000.
[5]
K. W. Hurst and S. W. Ellingson, “Path loss from a transmitter inside an aircraft cabin to an exterior fuselage-mounted antenna,” IEEE Transactions on Electromagnetic Compatibility, vol. 50, no. 3, pp. 504–512, 2008.
[6]
N. Moraitis, P. Constantinou, F. P. Fontan, and P. Valtr, “Propagation measurements and comparison with EM techniques for in-cabin wireless networks,” Eurasip Journal on Wireless Communications and Networking, vol. 2009, Article ID 784905, pp. 1–13, 2009.
[7]
A. Kohmura, J. Picard, N. Yonemoto, and K. Yamamoto, “Measurement of EM field inside a cruising aircraft: potential problems for the use of mobile phones on board,” Journal of Ultra-Wideband, Short Pulse Electromagnetics, vol. 9, pp. 335–342, 2010.
[8]
S. U. Hwu, Y. C. Loh, J. A. Dobbins, Q. D. Kroll, and C. C. Sham, “Space shuttle UHF communications performance evaluation,” IEEE Aerospace and Electronic Systems Magazine, vol. 20, no. 10, pp. 9–14, 2005.
[9]
R. M. Jha and W. Wiesbeck, “Geodesic constant method: a novel approach to analytical surface-ray tracing on convex conducting bodies,” IEEE Antennas and Propagation Magazine, vol. 37, no. 2, pp. 28–38, 1995.
[10]
P. Jackson, Ed., Jane’s All the World’s Aircraft 2010-2011, Jane’s Information Group, Coulsdon, UK, 2010.
[11]
L. Jossefsson and P. Persson, Conformal Array Antenna Theory and Design, John Wiley & Sons, New York, NY, USA, 2006.
[12]
S. Y. Seidel and T. S. Rappaport, “Site-specific propagation prediction for wireless in-building personal communication system design,” IEEE Transactions on Vehicular Technology, vol. 43, no. 4, pp. 879–891, 1994.
[13]
E. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, New York, NY, USA, 10th edition, 2010.
[14]
G. E. Athanasiadou and A. R. Nix, “A novel 3-d indoor ray-tracing propagation model: the path generator and evaluation of narrow-band and wide-band predictions,” IEEE Transactions on Vehicular Technology, vol. 49, no. 4, pp. 1152–1168, 2000.
[15]
M. Albani, G. Carluccio, and P. H. Pathak, “Uniform ray description for the PO scattering by vertices in curved surface with curvilinear edges and relatively general boundary conditions,” IEEE Transactions on Antennas and Propagation, vol. 59, no. 5, pp. 1587–1596, 2011.
[16]
P. Russer, Electromagnetics, Microwave Circuit and Antenna Design for Communications, Artech House, Norwood, Mass, USA, 2003.
[17]
C. L. Holloway and E. F. Kuester, “Impedance-type boundary conditions for a periodic interface between a dielectric and a highly conducting medium,” IEEE Transactions on Antennas and Propagation, vol. 48, no. 10, pp. 1660–1672, 2000.
[18]
D.-H. Kwon, R. J. Burkholder, and P. H. Pathak, “Ray analysis of electromagnetic field build-up and quality factor of electrically large shielded enclosures,” IEEE Transactions on Electromagnetic Compatibility, vol. 40, no. 1, pp. 19–26, 1998.
[19]
B. Choudhury, H. Singh, J. P. Bommer, and R. M. Jha, “RF field mapping inside large passenger aircraft cabin using refined ray-tracing algorithm,” IEEE Antennas and Propagation Magazine, vol. 55, no. 1, pp. 276–288, 2013.