全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Atherosclerosis Induced by Chlamydophila pneumoniae: A Controversial Theory

DOI: 10.1155/2013/941392

Full-Text   Cite this paper   Add to My Lib

Abstract:

More than a century ago, inflammation and infection were considered to have atherogenic effects. The old idea that coronary heart disease (CHD) possibly has an infectious etiology has only reemerged in recent years. Atherosclerosis is the main pathological process involved in CHD and is, logically, the first place to look for infectious etiology. The process of atherosclerosis itself provides the first hints of potential infectious cause. Smooth muscle proliferation, with subsequent intimal thickening, luminal narrowing, and endothelial degeneration, constitutes the natural history of atherosclerosis, being with the severity and speed of these changes. Both viral and bacterial pathogens have been proposed to be associated with the inflammatory changes found in atherosclerosis. Recently, Chlamydophila pneumoniae (C. pneumoniae) has been implicated as a possible etiologic agent of coronary artery disease and atherosclerosis. New evidence which supports a role for C. pneumoniae in the pathogenesis of atherosclerosis has emerged. C. pneumoniae has been detected in atherosclerotic arteries by several techniques, and the organism has been isolated from both coronary and carotid atheromas. Recent animal models have suggested that C. pneumoniae is capable of inducing atherosclerosis in both rabbit and mouse models of atherosclerosis. Furthermore, human clinical treatment studies which examined the use of antichlamydial macrolide antibiotics in patients with coronary atherosclerosis have been carried out. The causal relationship has not yet been proven, but ongoing large intervention trials and research on pathogenetic mechanisms may lead to the use of antimicrobial agents in the treatment of CHD in the future. 1. Introduction Cardiovascular disease, resulting from atherosclerosis, is a leading cause of global morbidity and mortality [1]. Despite the tremendous gains made in decreasing the number of deaths due to cardiovascular disease, it still is health care’s greatest challenge [2]. Genetic predisposition and classical environmental risk factors (family history, hypercholesterolemia, cigarette smoking, hypertension, diabetes, obesity and excessive drinking all figures into the equation) explain much of the attributable risk for cardiovascular events in populations, but other risk factors for the development and progression of atherosclerosis, which can be identified and modified, may be important therapeutic targets [1]. Traditional risk factors account for about 50% of the incidence of cardiac disease. In fact, many individuals who develop heart disease have

References

[1]  C. Watson and N. J. Alp, “Role of Chlamydia pneumoniae in atherosclerosis,” Clinical Science, vol. 114, no. 7-8, pp. 509–531, 2008.
[2]  P. T. Alpert, “New and emerging theories of cardiovascular disease: infection and elevated iron,” Biological Research for Nursing, vol. 6, no. 1, pp. 3–10, 2004.
[3]  I. W. Fong, “Emerging relations between infectious diseases and coronary artery disease and atherosclerosis,” Canadian Medical Association Journal, vol. 163, no. 1, pp. 49–56, 2000.
[4]  J. S. Zebrack and J. L. Anderson, “The role of infection in the pathogenesis of cardiovascular disease,” Progress in Cardiovascular Nursing, vol. 18, no. 1, pp. 42–49, 2003.
[5]  I. W. Fong, “New perspectives of infections in cardiovascular disease,” Current Cardiology Reviews, vol. 5, no. 2, pp. 87–104, 2009.
[6]  I. W. Fong, Ed., Infections and the Cardiovascular System: New Perspectives, Chlamydia Pneumoniae and the Cardiovascular System, Kluwer Academic/Plenum Publishers, New York, NY, USA, 2003.
[7]  I. W. Fong, Ed., Infections and the Cardiovascular System: New Perspectives, Periodontal Disease and the Cardiovascular System, Kluwer Academic/Plenum Publishers, New York, NY, USA, 2003.
[8]  J. P. Strong, G. T. Malcom, C. A. McMahan et al., “Prevalence and extent of atherosclerosis in adolescents and young adults: implications for prevention from the pathobiological determinants of atherosclerosis in youth study,” Journal of the American Medical Association, vol. 281, no. 8, pp. 727–735, 1999.
[9]  J. T. Grayston, “Infections caused by Chlamydia pneumoniae strain TWAR,” Clinical Infectious Diseases, vol. 15, no. 5, pp. 757–763, 1992.
[10]  R. Sessa, M. Nicoletti, M. Di Pietro et al., “Chlamydia pneumoniae and atherosclerosis: current state and future prospectives,” International Journal of Immunopathology and Pharmacology, vol. 22, no. 1, pp. 9–14, 2009.
[11]  I. W. Fong, B. Chiu, E. Viira, W. Tucker, H. Wood, and R. W. Peeling, “Chlamydial heat-shock protein-60 antibody and correlation with Chlamydia pneumoniae in atherosclerotic plaques,” Journal of Infectious Diseases, vol. 186, no. 10, pp. 1469–1473, 2002.
[12]  I. W. Fong, B. Chiu, E. Viira, D. Jang, and J. B. Mahony, “De novo induction of atherosclerosis by Chlamydia pneumoniae in a rabbit model,” Infection and Immunity, vol. 67, no. 11, pp. 6048–6055, 1999.
[13]  L. Li, E. Messas, E. L. Batista Jr., R. A. Levine, and S. Amar, “Porphyromonas gingivalis infection accelerates the progression of atherosclerosis in a heterozygous apolipoprotein E-deficient murine model,” Circulation, vol. 105, no. 7, pp. 861–867, 2002.
[14]  P. Vehmaan-Kreula, M. Puolakkainen, M. Sarvas, H. G. Welgus, and P. T. Kovanen, “Chlamydia pneumoniae proteins induce secretion of the 92-kDa gelatinase by human monocyte-derived macrophages,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 1, pp. E1–E8, 2001.
[15]  R. Schmidt, V. Redecke, Y. Breitfeld et al., “EMMPRIN (CD 147) is a central activator of extracellular matrix degradation by Chlamydia pneumoniae-infected monocytes. Implications for plaque rupture,” Thrombosis and Haemostasis, vol. 95, no. 1, pp. 151–158, 2006.
[16]  R. Dechend, M. Maass, J. Gieffers et al., “Chlamydia pneumoniae infection of vascular smooth muscle and endothelial cells activates NF-κb and induces tissue factor and PAI-1 expression: a potential link to accelerated arteriosclerosis,” Circulation, vol. 100, no. 13, pp. 1369–1373, 1999.
[17]  J. B. Muhlestein, J. L. Anderson, E. H. Hammond et al., “Infection with Chlamydia pneumoniae accelerates the development of atherosclerosis and treatment with azithromycin prevents it in a rabbit model,” Circulation, vol. 97, no. 7, pp. 633–636, 1998.
[18]  I. W. Fong, B. Chiu, E. Viira et al., “Can an antibiotic (Macrolide) prevent Chlamydia pneumoniae-induced atherosclerosis in a rabbit model?” Clinical and Diagnostic Laboratory Immunology, vol. 6, no. 6, pp. 891–894, 1999.
[19]  A. Kutlin, P. M. Roblin, and M. R. Hammerschlag, “In vitro activities of azithromycin and ofloxacin against Chlamydia pneumoniae in a continuous-infection model,” Antimicrobial Agents and Chemotherapy, vol. 43, no. 9, pp. 2268–2272, 1999.
[20]  K. Wolf and R. Malinverni, “Effect of azithromycin plus rifampin versus that of azithromycin alone on the eradication of Chlamydia pneumoniae from lung tissue in experimental pneumonitis,” Antimicrobial Agents and Chemotherapy, vol. 43, no. 6, pp. 1491–1493, 1999.
[21]  J. Gieffers, H. Füllgraf, J. Jahn et al., “Chlamydia pneumoniae infection in circulating human monocytes is refractory to antibiotic treatment,” Circulation, vol. 103, no. 3, pp. 351–356, 2001.
[22]  R. Dechend, J. Gieffers, R. Dietz et al., “Hydroxymethylglutaryl coenzyme A reductase inhibition reduces Chlamydia pneumoniae-induced cell interaction and activation,” Circulation, vol. 108, no. 3, pp. 261–265, 2003.
[23]  B. Schmeck, W. Beermann, P. Dje N'Guessan et al., “Simvastatin reduces Chlamydophila pneumoniae-mediated histone modifications and gene expression in cultured human endothelial cells,” Circulation Research, vol. 102, no. 8, pp. 888–895, 2008.
[24]  P. Liuba, E. Pesonen, A. Forslid et al., “Protective effects of simvastatin on coronary artery function in swine with acute infection,” Atherosclerosis, vol. 186, no. 2, pp. 331–336, 2006.
[25]  H. Hu, G. N. Pierce, and G. Zhong, “The atherogenic effects of chlamydia are dependent on serum cholesterol and specific to Chlamydia pneumoniae,” Journal of Clinical Investigation, vol. 103, no. 5, pp. 747–753, 1999.
[26]  M. Dunne, “The evolving relationship between Chlamydia pneumoniae and atherosclerosis,” Current Opinion in Infectious Diseases, vol. 13, no. 6, pp. 583–591, 2000.
[27]  J. Danesh, R. Collins, and R. Peto, “Chronic infections and coronary heart disease: is there a link?” The Lancet, vol. 350, no. 9075, pp. 430–436, 1997.
[28]  J. M. Ossewaarde, E. J. M. Feskens, A. De Vries, C. E. Vallinga, and D. Kromhout, “Chlamydia pneumoniae is a risk factor for coronary heart disease in symptom-free elderly men, but Helicobacter pylori and cytomegalovirus are not,” Epidemiology and Infection, vol. 120, no. 1, pp. 93–99, 1998.
[29]  M. Maass and J. Gieffers, “Cardiovascular disease risk from prior Chlamydia pneumoniae infection can be related to certain antigens recognized in the immunoblot profile,” Journal of Infection, vol. 35, no. 2, pp. 171–176, 1997.
[30]  B. Fagerberg, J. Gnarpe, H. Gnarpe, S. Agewall, and J. Wikstrand, “Chlamydia pneumoniae but not cytomegalovirus antibodies are associated with future risk of stroke and cardiovascular disease: a prospective study in middle-aged to elderly men with treated hypertension,” Stroke, vol. 30, no. 2, pp. 299–305, 1999.
[31]  N. Miyashita, E. Toyota, T. Sawayama et al., “Association of chronic infection of Chlamydia pneumoniae and coronary heart disease in the Japanese,” Internal Medicine, vol. 37, no. 11, pp. 913–916, 1998.
[32]  G. N. Thomas, O. Scheel, A. P. Koehler, D. C. J. Bassett, and A. F. B. Cheng, “Respiratory chlamydial infections in a Hong Kong teaching hospital and association with coronary heart disease,” Scandinavian Journal of Infectious Diseases, Supplement, no. 104, pp. 30–33, 1997.
[33]  P. J. Cook, D. Honeybourne, G. Y. H. Lip, D. G. Beevers, R. Wise, and P. Davies, “Chlamydia pneumoniae antibody titers are significantly associated with acute stroke and transient cerebral ischemia: the West Birmingham Stroke Project,” Stroke, vol. 29, no. 2, pp. 404–410, 1998.
[34]  D. P. Strachan, D. Carrington, M. A. Mendall et al., “Relation of Chlamydia pneumoniae serology to mortality and incidence of ischaemic heart disease over 13 years in the Caerphilly prospective heart disease study,” British Medical Journal, vol. 318, no. 7190, pp. 1035–1040, 1999.
[35]  P. M. Ridker, R. B. Kundsin, M. J. Stampfer, S. Poulin, and C. H. Hennekens, “Prospective study of Chlamydia pneumoniae IgG seropositivity and risks of future myocardial infarction,” Circulation, vol. 99, no. 9, pp. 1161–1164, 1999.
[36]  A. Laurila, A. Bloigu, S. N?yh?, J. Hassi, M. Leinonen, and P. Saikku, “Chronic Chlamydia pneumoniae infection is associated with a serum lipid profile known to be a risk factor for atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 17, no. 11, pp. 2910–2913, 1997.
[37]  M. Berger, B. Schr?der, G. Daeschlein et al., “Chlamydia pneumoniae DNA in non-coronary atherosclerotic plaques and circulating leukocytes,” Journal of Laboratory and Clinical Medicine, vol. 136, no. 3, pp. 194–200, 2000.
[38]  S. F. Dowell, R. W. Peeling, J. Boman et al., “Standardizing Chlamydia pneumoniae assays: recommendations from the Centers for Disease Control and Prevention (USA) and the Laboratory Centre for Disease Control (Canada),” Clinical Infectious Diseases, vol. 33, no. 4, pp. 492–502, 2001.
[39]  T. Tiirola, J. Sinisalo, M. S. Nieminen et al., “Chlamydial lipopolysaccharide is present in serum during acute coronary syndrome and correlates with CRP levels,” Atherosclerosis, vol. 194, no. 2, pp. 403–407, 2007.
[40]  E. Gurfinkel, G. Bozovich, A. Daroca, E. Beck, and B. Mautner, “Randomised trial of roxithromycin in non-Q-wave coronary syndromes: ROXIS pilot study,” The Lancet, vol. 350, no. 9075, pp. 404–407, 1997.
[41]  S. Gupta, E. W. Leatham, D. Carrington, M. A. Mendall, J. C. Kaski, and A. J. Camm, “Elevated Chlamydia pneumoniae antibodies, cardiovascular events, and azithromycin in male survivors of myocardial infarction,” Circulation, vol. 96, no. 2, pp. 404–407, 1997.
[42]  E. Gurfinkel, G. Bozovich, E. Beck, E. Testa, B. Livellara, and B. Mautner, “Treatment with the antibiotic roxithromycin in patients with acute non-Q-wave coronary syndromes. The final report of the ROXIS study,” European Heart Journal, vol. 20, no. 2, pp. 121–127, 1999.
[43]  O. S. Mahdi, B. D. Horne, K. Mullen, J. B. Muhlestein, and G. I. Byrne, “Serum immunoglobulin G antibodies to chlamydial heat shock protein 60 but not to human and bacterial homologs are associated with coronary artery disease,” Circulation, vol. 106, no. 13, pp. 1659–1663, 2002.
[44]  R. J. Hogan, S. A. Mathews, S. Mukhopadhyay, J. T. Summersgill, and P. Timms, “Chlamydial persistence: beyond the biphasic paradigm,” Infection and Immunity, vol. 72, no. 4, pp. 1843–1855, 2004.
[45]  N. Borel, J. T. Summersgill, S. Mukhopadhyay, R. D. Miller, J. A. Ramirez, and A. Pospischil, “Evidence for persistent Chlamydia pneumoniae infection of human coronary atheromas,” Atherosclerosis, vol. 199, no. 1, pp. 154–161, 2008.
[46]  S. Bunk, I. Susnea, J. Rupp et al., “Immunoproteomic identification and serological responses to novel Chlamydia pneumoniae antigens that are associated with persistent C. pneumoniae infections,” Journal of Immunology, vol. 180, no. 8, pp. 5490–5498, 2008.
[47]  J. Boman, S. S?derberg, J. Forsberg et al., “High prevalence of Chlamydia pneumoniae DNA in peripheral blood mononuclear cells in patients with cardiovascular disease and in middle-aged blood donors,” Journal of Infectious Diseases, vol. 178, no. 1, pp. 274–277, 1998.
[48]  Y.-K. Wong, K. D. Dawkins, and M. E. Ward, “Circulating Chlamydia pneumoniae DNA as a predictor of coronary artery disease,” Journal of the American College of Cardiology, vol. 34, no. 5, pp. 1435–1439, 1999.
[49]  R. Ross, “The pathogenesis of atherosclerosis: a perspective for the 1990s,” Nature, vol. 362, no. 6423, pp. 801–809, 1993.
[50]  M. E. Ward, “The immunobiology and immunopathology of chlamydial infections,” APMIS, vol. 103, no. 11, pp. 769–796, 1995.
[51]  P. Saikku, “Chlamydia pneumoniae infection as a risk factor in acute myocardial infarction,” European Heart Journal, vol. 14, pp. 62–65, 1993.
[52]  M. S. Brown and J. L. Goldstein, “Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis,” Annual Review of Biochemistry, vol. 52, pp. 223–261, 1983.
[53]  M. V. Kalayoglu and G. I. Byrne, “Induction of macrophage foam cell formation by Chlamydia pneumoniae,” Journal of Infectious Diseases, vol. 177, no. 3, pp. 725–729, 1998.
[54]  M. V. Kalayoglu and G. I. Byrne, “A Chlamydia pneumoniae component that induces macrophage foam cell formation is chlamydial lipopolysaccharide,” Infection and Immunity, vol. 66, no. 11, pp. 5067–5072, 1998.
[55]  L. A. Campbell, E. R. O'Brien, A. L. Cappuccio et al., “Detection of Chlamydia pneumoniae TWAR in human coronary atherectomy tissues,” Journal of Infectious Diseases, vol. 172, no. 2, pp. 585–588, 1995.
[56]  C.-C. Kuo, A. Shor, L. A. Campbell, H. Fukushi, D. L. Patton, and J. T. Grayston, “Demonstration of Chlamydia pneumoniae in atherosclerotic lesions of coronary arteries,” Journal of Infectious Diseases, vol. 167, no. 4, pp. 841–849, 1993.
[57]  J. A. Ramirez, “Isolation of Chlamydia pneumoniae from the coronary artery of a patient with coronary atherosclerosis,” Annals of Internal Medicine, vol. 125, no. 12, pp. 979–982, 1996.
[58]  M. Leinonen, Y. Kerttula, T. Weber, and P. Saikku, “Acute phase response in Chlamydia pneumoniae pneumonia,” in Abstracts of the 5th European Congress on Clinical Microbiology and Infectious Diseases, p. 86, Oslo, Norway, September 1991.
[59]  A. Laurila, A. Bloigu, S. N?yh?, J. Hassi, M. Leinonen, and P. Saikku, “Chlamydia pneumoniae antibodies and serum lipids in Finnish men: cross sectional study,” British Medical Journal, vol. 314, no. 7092, pp. 1456–1457, 1997.
[60]  V. G. Cabana, J. N. Siegel, and S. M. Sabesin, “Effects of the acute phase response on the concentration and density distribution of plasma lipids and apolipoproteins,” Journal of Lipid Research, vol. 30, no. 1, pp. 39–49, 1989.
[61]  K. R. Feingold, I. Hardardottir, R. Memon et al., “Effect of endotoxin on cholesterol biosynthesis and distribution in serum lipoproteins in Syrian hamsters,” Journal of Lipid Research, vol. 34, no. 12, pp. 2147–2158, 1993.
[62]  B. J. Auerbach and J. S. Parks, “Lipoprotein abnormalities associated with lipopolysaccharide-induced lecithin:cholesterol acyltransferase and lipase deficiency,” Journal of Biological Chemistry, vol. 264, no. 17, pp. 10264–10270, 1989.
[63]  H. Ly, O. L. Francone, C. J. Fielding et al., “Endotoxin and TNF lead to reduced plasma LCAT activity and decreased hepatic LCAT mRNA levels in Syrian hamsters,” Journal of Lipid Research, vol. 36, no. 6, pp. 1254–1263, 1995.
[64]  K. R. Feingold and C. Grunfeld, “Tumor necrosis factor-alpha stimulates hepatic lipogenesis in the rat in vivo,” Journal of Clinical Investigation, vol. 80, no. 1, pp. 184–190, 1987.
[65]  K. R. Feingold, A. S. Pollock, A. H. Moser, J. K. Shigenaga, and C. Grunfeld, “Discordant regulation of proteins of cholesterol metabolism during the acute phase response,” Journal of Lipid Research, vol. 36, no. 7, pp. 1474–1482, 1995.
[66]  M. Galdiero, G. C. De L'Ero, and A. Marcatili, “Cytokine and adhesion molecule expression in human monocytes and endothelial cells stimulated with bacterial heat shock proteins,” Infection and Immunity, vol. 65, no. 2, pp. 699–707, 1997.
[67]  A. Kol, G. K. Sukhova, A. H. Lichtman, and P. Libby, “Chlamydial heat shock protein 60 localizes in human atheroma and regulates macrophage tumor necrosis factor-α and matrix metalloproteinase expression,” Circulation, vol. 98, no. 4, pp. 300–307, 1998.
[68]  C. A. Gaydos, J. T. Summersgill, N. N. Sahney, J. A. Ramirez, and T. C. Quinn, “Replication of Chlamydia pneumoniae in vitro in human macrophages, endothelial cells, and aortic artery smooth muscle cells,” Infection and Immunity, vol. 64, no. 5, pp. 1614–1620, 1996.
[69]  K. L. Godzik, E. R. O'Brien, S.-K. Wang, and C.-C. Kuo, “In vitro susceptibility of human vascular wall cells to infection with Chlamydia pneumoniae,” Journal of Clinical Microbiology, vol. 33, no. 9, pp. 2411–2414, 1995.
[70]  S.-S. E. Kaukoranta-Tolvanen, T. Ronni, M. Leinonen, P. Saikku, and K. Laitinen, “Expression of adhesion molecules on endothelial cell stimulated by Chlamydia pneumoniae,” Microbial Pathogenesis, vol. 21, no. 5, pp. 407–411, 1996.
[71]  R. E. Molestina, D. Dean, R. D. Miller, J. A. Ramirez, and J. T. Summersgill, “Characterization of a strain of Chlamydia pneumoniae isolated from a coronary atheroma by analysis of the omp1 gene and biological activity in human endothelial cells,” Infection and Immunity, vol. 66, no. 4, pp. 1370–1376, 1998.
[72]  M. Heinemann, M. Susa, U. Simnacher, R. Marre, and A. Essig, “Growth of Chlamydia pneumoniae induces cytokine production and expression of CD14 in a human monocytic cell line,” Infection and Immunity, vol. 64, no. 11, pp. 4872–4875, 1996.
[73]  W. L. Beatty, G. I. Byrne, and R. P. Morrison, “Morphologic and antigenic characterization of interferon γ-mediated persistent Chlamydia trachomatis infection in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 9, pp. 3998–4002, 1993.
[74]  Q. Xu, H. Dietrich, H. J. Steiner et al., “Induction of arteriosclerosis in normocholesterolemic rabbits by immunization with heat shock protein 65,” Arteriosclerosis and Thrombosis, vol. 12, no. 7, pp. 789–799, 1992.
[75]  G. Wick, R. Kleindienst, G. Schett, A. Amberger, and Q. Xu, “Role of heat shock protein 65/60 in the pathogenesis of atherosclerosis,” International Archives of Allergy and Immunology, vol. 107, no. 1–3, pp. 130–131, 1995.
[76]  Q. Xu, J. Willeit, M. Marosi et al., “Association of serum antibodies to heat-shock protein 65 with carotid atherosclerosis,” The Lancet, vol. 341, no. 8840, pp. 255–259, 1993.
[77]  F. Hoppichler, M. Lechleitner, C. Traweger et al., “Changes of serum antibodies to heat-shock protein 65 in coronary heart disease and acute myocardial infarction,” Atherosclerosis, vol. 126, no. 2, pp. 333–338, 1996.
[78]  G. Schett, Q. Xu, A. Amberger et al., “Autoantibodies against heat shock protein 60 mediate endothelial cytotoxicity,” Journal of Clinical Investigation, vol. 96, no. 6, pp. 2569–2577, 1995.
[79]  Q. Xu, G. Schett, C. S. Seitz, Y. Hu, R. S. Gupta, and G. Wick, “Surface staining and cytotoxic activity of heat-shock protein 60 antibody in stressed aortic endothelial cells,” Circulation Research, vol. 75, no. 6, pp. 1078–1085, 1994.
[80]  G. Schett, B. Metzler, M. Mayr et al., “Macrophage-lysis mediated by autoantibodies to heat shock protein 65/60,” Atherosclerosis, vol. 128, no. 1, pp. 27–38, 1997.
[81]  L. A. Jackson, L. A. Campbell, R. A. Schmidt et al., “Specificity of detection of Chlamydia pneumoniae in cardiovascular atheroma: evaluation of the innocent bystander hypothesis,” American Journal of Pathology, vol. 150, no. 5, pp. 1785–1790, 1997.
[82]  S.-S. Kaukoranta-Tolvanen, K. Laitinen, P. Saikku, and M. Leinonen, “Chlamydia pneumoniae multiplies in human endothelial cells in vitro,” Microbial Pathogenesis, vol. 16, no. 4, pp. 313–319, 1994.
[83]  S.-S. E. Kaukoranta-Tolvanen, A.-M. Teppo, K. Laitinen, P. Saikku, K. Linnavuori, and M. Leinonen, “Growth of Chlamydia pneumoniae in cultured human peripheral blood mononuclear cells and induction of a cytokine response,” Microbial Pathogenesis, vol. 21, no. 3, pp. 215–221, 1996.
[84]  P. S. Frenette and D. D. Wagner, “Molecular medicine adhesion molecules—part I,” The New England Journal of Medicine, vol. 334, no. 23, pp. 1526–1529, 1996.
[85]  P. S. Frenette and D. D. Wagner, “Adhesion molecules—part II: blood vessels and blood cells,” The New England Journal of Medicine, vol. 335, no. 1, pp. 43–45, 1996.
[86]  W. L. Beatty, R. P. Morrison, and G. I. Byrne, “Persistent chlamydiae: from cell culture to a paradigm for chlamydial pathogenesis,” Microbiological Reviews, vol. 58, no. 4, pp. 686–699, 1994.
[87]  R. A. Young and T. J. Elliott, “Stress proteins, infection, and immune surveillance,” Cell, vol. 59, no. 1, pp. 5–8, 1989.
[88]  Y.-J. Geng, “Regulation of programmed cell death or apoptosis in atherosclerosis,” Heart and Vessels, vol. 12, no. 12, pp. 76–80, 1997.
[89]  M. J. Mitchinson, S. J. Hardwick, and M. R. Bennett, “Cell death in atherosclerotic plaques,” Current Opinion in Lipidology, vol. 7, no. 5, pp. 324–329, 1996.
[90]  A. Kol, T. Bourcier, A. H. Lichtman, and P. Libby, “Chlamydial and human heat shock protein 60s activate human vascular endothelium, smooth muscle cells, and macrophages,” Journal of Clinical Investigation, vol. 103, no. 4, pp. 571–577, 1999.
[91]  D. Steinberg, “Oxidative modification of LDL and atherogenesis,” Circulation, vol. 95, no. 4, pp. 1062–1071, 1997.
[92]  D. Steinberg, “Low density lipoprotein oxidation and its pathobiological significance,” Journal of Biological Chemistry, vol. 272, no. 34, pp. 20963–20966, 1997.
[93]  J. R. Hessler, D. W. Morel, L. J. Lewis, and G. M. Chisolm, “Lipoprotein oxidation and lipoprotein-induced cytotoxicity,” Arteriosclerosis, vol. 3, no. 3, pp. 215–222, 1983.
[94]  T. Henriksen, E. M. Mahoney, and D. Steinberg, “Interactions of plasma lipoproteins with endothelial cells,” Annals of the New York Academy of Sciences, vol. 401, pp. 102–116, 1982.
[95]  S. D. Cushing, J. A. Berliner, A. J. Valente et al., “Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 13, pp. 5134–5138, 1990.
[96]  J. A. Berliner and J. W. Heinecke, “The role of oxidized lipoproteins in atherogenesis,” Free Radical Biology and Medicine, vol. 20, no. 5, pp. 707–727, 1996.
[97]  S. Yla-Herttuala, W. Palinski, M. E. Rosenfeld, D. Steinberg, and J. L. Witztum, “Lipoproteins in normal and atherosclerotic aorta,” European Heart Journal, vol. 11, pp. 88–99, 1990.
[98]  N. G. Stephens, A. Parsons, P. M. Schofield et al., “Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS),” The Lancet, vol. 347, no. 9004, pp. 781–786, 1996.
[99]  S. Chatterjee and N. Ghosh, “Oxidized low density lipoprotein stimulates aortic smooth muscle cell proliferation,” Glycobiology, vol. 6, no. 3, pp. 303–311, 1996.
[100]  R. Terkeltaub, C. L. Banka, J. Solan, D. Santoro, K. Brand, and L. K. Curtiss, “Oxidized LDL induces monocytic cell expression of interleukin-8, a chemokine with T-lymphocyte chemotactic activity,” Arteriosclerosis and Thrombosis, vol. 14, no. 1, pp. 47–53, 1994.
[101]  M. F. Tosi and M. R. Hammerschlag, “Chlamydia trachomatis selectively stimulates myeloperoxidase release but not superoxide production in human neutrophils,” Journal of Infectious Diseases, vol. 158, no. 2, pp. 457–460, 1988.
[102]  J. W. Heinecke, “Mechanisms of oxidative damage of low density lipoprotein in human atherosclerosis,” Current Opinion in Lipidology, vol. 8, no. 5, pp. 268–274, 1997.
[103]  M. K. Cathcart, A. K. McNally, and G. M. Chisolm, “Lipoxygenase-mediated transformation of human low density lipoprotein to an oxidized and cytotoxic complex,” Journal of Lipid Research, vol. 32, no. 1, pp. 63–70, 1991.
[104]  M. Aviram, M. Rosenblat, A. Etzioni, and R. Levy, “Activation of NADPH oxidase is required for macrophage-mediated oxidation of low-density lipoprotein,” Metabolism: Clinical and Experimental, vol. 45, no. 9, pp. 1069–1079, 1996.
[105]  A. Graham, J. L. Wood, V. O'Leary, and D. Stone, “Human (THP-1) macrophages oxidize LDL by a thiol-dependent mechanism,” Free Radical Research, vol. 25, no. 2, pp. 181–192, 1994.
[106]  J. W. Heinecke, H. Rosen, and A. Chait, “Iron and copper promote modification of low density lipoprotein by human arterial smooth muscle cells in culture,” Journal of Clinical Investigation, vol. 74, no. 5, pp. 1890–1894, 1984.
[107]  Q. Li, V. Subbulakshmi, A. P. Fields, N. R. Murray, and M. K. Cathcart, “Protein kinase Cα regulates human monocyte production and low density lipoprotein lipid oxidation,” Journal of Biological Chemistry, vol. 274, no. 6, pp. 3764–3771, 1999.
[108]  G. L. Kukielka, K. A. Youker, H. K. Hawkins et al., “Regulation of ICAM-1 and IL-6 in myocardial ischemia: effect of reperfusion,” Annals of the New York Academy of Sciences, vol. 723, pp. 258–270, 1994.
[109]  Y. Seino, U. Ikeda, M. Ikeda et al., “Interleukin 6 gene transcripts are expressed in human atherosclerotic lesions,” Cytokine, vol. 6, no. 1, pp. 87–91, 1994.
[110]  S. Yazdani, A. D. Simon, R. Vidhun, C. Gulotta, A. Schwartz, and L. E. Rabbani, “Inflammatory profile in unstable angina versus stable angina in patients undergoing percutaneous interventions,” American Heart Journal, vol. 136, no. 2, pp. 357–361, 1998.
[111]  G. K. Hansson, “Immunological control mechanisms in plaque formation,” Basic Research in Cardiology, vol. 89, supplement 1, pp. 41–46, 1994.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133