全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Comparing Deaths from Influenza H1N1 and Seasonal Influenza A: Main Sociodemographic and Clinical Differences between the Most Prevalent 2009 Viruses

DOI: 10.1155/2012/501784

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. During the 2009 spring epidemic outbreak in Mexico, an important research and policy question faced was related to the differences in clinical profile and population characteristics of those affected by the new H1N1 virus compared with the seasonal virus. Methods and Findings. Data from clinical files from all influenza A deaths in Mexico between April 10 and July 13, 2009 were analyzed to describe differences in clinical and socioeconomic profile between H1N1 and non-H1N1 cases. A total of 324 influenza A mortality cases were studied of which 239 presented rt-PCR confirmation for H1N1 virus and 85 for seasonal influenza A. From the differences of means and multivariate logistic regression, it was found that H1N1 deaths occurred in younger and less educated people, and among those who engage in activities where there is increased contact with other unknown persons (OR 4.52, 95% CI 1.56–13.14). Clinical symptoms were similar except for dyspnea, headache, and chest pain that were less frequently found among H1N1 cases. Conclusions. Findings suggest that age, education, and occupation are factors that may be useful to identify risk for H1N1 among influenza cases, and also that patients with early dyspnea, headache, and chest pain are more likely to be non-H1N1 cases. 1. Introduction Influenza virus is the cause of one of the most common infections worldwide. Its effect on the global population carries important economic, healthcare system, and human suffering consequences [1]. Influenza virus type A is highly contagious and is the most pathogenic of all human influenza viruses [1]. Human antibodies recognize two antigens (glycoprotein) expressed on the viral surface called hemagglutinin (HA) and neuraminidase (NA). Changes in these glycoprotein represent antigenic variation (antigen drift) that is responsible for the constant changes within the common strains of seasonal influenza. Influenza is classified into 16 HA subtypes and 9 NA subtypes [1], and as pointed out, influenza comprises “the oldest emerging virus that is still emerging” [2]. Influenza pandemics occur when an influenza virus, that presents an hemagglutinin (HA) molecule for which there is limited or no existing immunity, emerges and efficiently transmits from human to human [3]. The emergence of a new virus subtype with a new HA is called antigen shift and will condition the lack of immune response to infection by the new virus. Despite of pandemics during the last century, this disease generally does not represent an actual concern for the overall population. Several

References

[1]  R. Martin Daniel, E. Brauner Mark, and F. Plouffe Joseph, “Influenza and pneumococcal vaccinations in the emergency department,” Emergency Medicine Clinics of North America, vol. 26, no. 2, pp. 549–570, 2008.
[2]  G. Neumann, T. Noda, and Y. Kawaoka, “Emergence and pandemic potential of swine-origin H1N1 influenza virus,” Nature, vol. 459, no. 7249, pp. 931–939, 2009.
[3]  R. J. Garten, C. T. Davis, C. A. Russell , et al., “Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans,” Science, vol. 325, no. 5937, pp. 197–201, 2009.
[4]  S. S. Morse, “Emerging viruses: defining the rules for viral traffic,” Perspectives in Biology and Medicine, vol. 34, no. 3, pp. 387–409, 1991.
[5]  B. Cunha, “Influenza: historical aspects of epidemiological concern,” Infectious Disease Clinics of North America, vol. 18, no. 1, pp. 141–155, 2004.
[6]  D. Lavanchy, “The importance of global surveillance of influenza,” Vaccine, vol. 17, no. 1, pp. S24–S25, 1999.
[7]  A. D. Osterhaus, “Pre or post-pandemic influenza vaccine?” Vaccine, vol. 25, no. 27, pp. 4983–4984, 2007.
[8]  R. Perez-Padilla, D. de la Rosa-Zamboni, S. Ponce De Leon et al., “Pneumonia and respiratory failure from swine-origin influenza A (H1N1) in Mexico,” New England Journal of Medicine, vol. 361, no. 7, pp. 680–689, 2009.
[9]  G. Chowell, S. M. Bertozzi, M. A. Colchero et al., “Severe respiratory disease concurrent with the circulation of H1N1 influenza,” New England Journal of Medicine, vol. 361, no. 7, pp. 674–679, 2009.
[10]  A. R. Lai, K. Keet, C. M. Yong, and J. V. Diaz, “Severe H1N1-associated acute respiratory distress syndrome: a case series,” The American Journal of Medicine, vol. 123, no. 3, pp. 282–285, 2010.
[11]  J. H. Beigel, “Influenza,” Critical Care Medicine, vol. 36, no. 9, pp. 2660–2666, 2008.
[12]  A. R. Tuite, A. L. Greer, M. Whelan et al., “Estimated epidemiologic parameters and morbidity associated with pandemic H1N1 influenza,” Canadian Medical Association Journal, vol. 182, no. 2, pp. 131–136, 2010.
[13]  C. de Haro Lopez, R. Ferre Roca, and J. Velles Daunis, “Neumonia y syndrome de distress respiratorio agudo producido por el virus de la influenza A (H1N1),” Medicina Intensiva, vol. 33, no. 9, pp. 455–458, 2009.
[14]  G. Fajardo Dolci, J. Meljem Moctezuma, J. Rodriguez Suarez, et al., Recomendaciones para Mejorar la Calidad de la Atención en Pacientes con Influenza A(H1N1), Comisión Nacional de Arbitraje Médico, 2009.
[15]  M. J. W. Sprenger, P. G. H. Mulder, W. E. P. Beyer, R. Van Strik, and N. Masurel, “Impact of influenza on mortality in relation to age and underlying disease, 1967–1989,” International Journal of Epidemiology, vol. 22, no. 2, pp. 334–340, 1993.
[16]  G. E. Fajardo-Dolci, F. Hernández-Torres, J. Santacruz-Varela et al., “Perfil epidemiológico de la mortalidad por influenza humana A (H1N1) en México,” Salud Publica de Mexico, vol. 51, no. 5, pp. 361–371, 2009.
[17]  N. J. Sharvill, “A/H1N1 flu pandemic. Should flu have at least one respiratory symptom?” British Medical Journal, vol. 339, article b3757, 2009.
[18]  A. S. Monto, S. Gravenstein, M. Elliott, M. Colopy, and J. Schweinle, “Clinical signs and symptoms predicting influenza infection,” Archives of Internal Medicine, vol. 160, no. 21, pp. 3243–3247, 2000.
[19]  Writing Committee of the WHO Consultation on Clinical Aspects of Pandemic (H1N1) 2009 Influenza, “Clinical aspects of pandemic 2009 influenza A (H1N1) virus infection,” New England Journal of Medicine, vol. 362, no. 18, pp. 1708–1719, 2010.
[20]  WHO, “Comparing deaths from pandemic and seasonal influenza. Pandemic (H1N1) 2009 briefing note 20,” 2009, http://www.who.int/csr/disease/swineflu/notes/briefing_20091222/en/print.html.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133