To summarize the literature regarding susceptibility of pregnant women to infectious diseases and severity of resulting disease, we conducted a review using a PubMed search and other strategies. Studies were included if they reported information on infection risk or disease outcome in pregnant women. In all, 1454 abstracts were reviewed, and a total of 85 studies were included. Data were extracted regarding number of cases in pregnant women, rates of infection, risk factors for disease severity or complications, and maternal outcomes. The evidence indicates that pregnancy is associated with increased severity of some infectious diseases, such as influenza, malaria, hepatitis E, and herpes simplex virus (HSV) infection (risk for dissemination/hepatitis); there is also some evidence for increased severity of measles and smallpox. Disease severity seems higher with advanced pregnancy. Pregnant women may be more susceptible to acquisition of malaria, HIV infection, and listeriosis, although the evidence is limited. These results reinforce the importance of infection prevention as well as of early identification and treatment of suspected influenza, malaria, hepatitis E, and HSV disease during pregnancy. 1. Introduction Pregnancy is often thought to be associated with increased susceptibility to infection. For example, during the 19th and early 20th century, pregnancy was thought to have a deleterious effect on the course of tuberculosis, so much so that therapeutic abortion was recommended in pregnant women with tuberculosis [1]. However, during the second half of the 20th century, after radiography became available, it became clear that the extent of disease, radiographic pattern, and individual susceptibility were more important than pregnancy itself in determining the course and prognosis of the disease. After the advent of effective chemotherapy, pregnant women with tuberculosis have the same generally good prognosis as nonpregnant women. In the 1950s, the transplant immunologist Peter Medawar proposed that during pregnancy there is a general maternal immune suppression in order to assure tolerance of the semiallogeneic fetus [2–4]. Our understanding of the immune alterations that occur during pregnancy has evolved considerably since Medawar’s time to include more complex theories of immune alteration. There is evidence that adaptive immune responses are weakened, potentially explaining reduced viral clearance [4–7]. Evidence also suggests a boosted innate response [4, 6, 8], which may represent a compensatory immune mechanism to protect the pregnant
References
[1]
J. R. Starke, “Tuberculosis: an old disease but a new threat to the mother, fetus, and neonate,” Clinics in Perinatology, vol. 24, no. 1, pp. 107–127, 1997.
[2]
W. D. Billington, “The immunological problem of pregnancy: 50 Years with the hope of progress. A tribute to Peter Medawar,” Journal of Reproductive Immunology, vol. 60, no. 1, pp. 1–11, 2003.
[3]
P. Medawar, “Some immunological and endocrinological problems raised by the evolution of viviparity in vertebrates,” Symposia of the Society for Experimental Biology, vol. 7, pp. 320–338, 1952.
[4]
M. Pazos, R. S. Sperling, T. M. Moran, and T. A. Kraus, “The influence of pregnancy on systemic immunity,” Immunologic Research, vol. 54, no. 1–3, pp. 254–261, 2012.
[5]
A. L. Zoller, F. J. Schnell, and G. J. Kersh, “Murine pregnancy leads to reduced proliferation of maternal thymocytes and decreased thymic emigration,” Immunology, vol. 121, no. 2, pp. 207–215, 2007.
[6]
T. A. Kraus, S. M. Engel, R. S. Sperling, et al., “Characterizing the pregnancy immune phenotype: results of the viral immunity and pregnancy (VIP) study,” Journal of Clinical Immunology, vol. 32, no. 2, pp. 300–311, 2012.
[7]
R. L. Forbes, P. G. Gibson, V. E. Murphy, and P. A. B. Wark, “Impaired type I and III interferon response to rhinovirus infection during pregnancy and asthma,” Thorax, vol. 67, no. 3, pp. 209–214, 2012.
[8]
K. D. Priddy, “Immunologic adaptation dduring pregnancy,” Journal of Obstetric, Gynecologic, & Neonatal Nursing, vol. 26, no. 6, pp. 388–356, 1997.
[9]
J. W. Harris, “Influenza occurring in pregnant women,” Journal of the American Medical Association, vol. 72, pp. 978–980, 1919.
[10]
A. M. Siston, S. A. Rasmussen, M. A. Honein et al., “Pandemic 2009 influenza A(H1N1) virus illness among pregnant women in the United States,” Journal of the American Medical Association, vol. 303, no. 15, pp. 1517–1525, 2010.
[11]
M. Cervantes-Gonzalez and O. Launay, “Pandemic influenza A (H1N1) in pregnant women: impact of early diagnosis and antiviral treatment,” Expert Review of Anti-Infective Therapy, vol. 8, no. 9, pp. 981–984, 2010.
[12]
K. M. Neuzil, G. W. Reed, E. F. Mitchel, L. Simonsen, and M. R. Griffin, “Impact of influenza on acute cardiopulmonary hospitalizations in pregnant women,” American Journal of Epidemiology, vol. 148, no. 11, pp. 1094–1102, 1998.
[13]
D. L. Schanzer, J. M. Langley, and T. W. S. Tam, “Influenza-attributed hospitalization rates among pregnant women in Canada 1994–2000,” Journal of Obstetrics and Gynaecology Canada, vol. 29, no. 8, pp. 622–629, 2007.
[14]
L. Lindsay, L. A. Jackson, D. A. Savitz et al., “Community influenza activity and risk of acute influenza-like illness episodes among healthy unvaccinated pregnant and postpartum women,” American Journal of Epidemiology, vol. 163, no. 9, pp. 838–848, 2006.
[15]
D. J. Jamieson, R. N. Theiler, and S. A. Rasmussen, “Emerging infections and pregnancy,” Emerging Infectious Diseases, vol. 12, no. 11, pp. 1638–1643, 2006.
[16]
A. Gutiérrez-Pizarraya, P. Pérez-Romero, R. Alvarez, et al., “Unexpected severity of cases of influenza B infection in paptients that require hospitalization duringnthe first postpandemic wave,” Journal of Infection, vol. 65, no. 5, pp. 423–430, 2012.
[17]
A. Pramanick, S. Rathore, J. V. Peter, M. Moorthy, and J. Lionel, “Pandemic (H1N1) 2009 virus infection during pregnancy in South India,” International Journal of Gynecology and Obstetrics, vol. 113, no. 1, pp. 32–35, 2011.
[18]
E. Rolland-Harris, J. Vachon, R. Kropp et al., “Hospitalization of pregnant women with pandemic A(H1N1) 2009 influenza in Canada,” Epidemiology and Infection, vol. 140, pp. 1316–1327, 2012.
[19]
A. Mickiene, L. Daniusevi?iute, N. Vanagaite et al., “Hospitalized adult patients with 2009 pandemic influenza a (H1N1) in Kaunas, Lithuania,” Medicina, vol. 47, no. 1, pp. 11–18, 2011.
[20]
J. Rogerson Steven, “Malaria in pregnancy and the newborn,” Advances in Experimental Medicine and Biology, vol. 659, pp. 139–152, 2010.
[21]
L. Brabin, B. J. Brabin, and H. J. Van Der Kaay, “High and low spleen rates distinguish two populations of women living under the same malaria endemic conditions in Madang, Papua New Guinea,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 82, no. 5, pp. 671–676, 1988.
[22]
B. J. Brabin, L. R. Brabin, J. Sapau, and M. P. Alpers, “A longitudinal study of splenomegaly in pregnancy in a malaria endemic area in Papua New Guinea,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 82, no. 5, pp. 677–682, 1988.
[23]
H. M. Gilles, J. B. Lawson, M. Sibellas, A. Voller, and N. Allan, “Malaria and pregnancy,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 63, no. 1, p. 1, 1969.
[24]
B. J. Brabin, “An analysis of malaria in pregnancy in Africa,” Bulletin of the World Health Organization, vol. 61, no. 6, pp. 1005–1016, 1983.
[25]
I. A. McGregor, “Epidemiology, malaria and pregnancy,” American Journal of Tropical Medicine and Hygiene, vol. 33, no. 4, pp. 517–525, 1984.
[26]
S. M. Taylor, A. M. van Eijik, C. C. Hand, et al., “Quantification of the burden and consequences of pregnancy-associated malaria in the Democratic Republic of Congo,” Journal of Infectious Diseases, vol. 204, no. 11, pp. 1762–1771, 2011.
[27]
I. Adam, A. H. Khamis, and M. I. Elbashir, “Prevalence and risk factors for Plasmodium falciparum malaria in pregnant women of eastern Sudan,” Malaria Journal, vol. 4, article 18, 2005.
[28]
R. S. Bray and M. L. Anderson, “Falciparum malaria and pregnancy,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 73, pp. 427–431, 1979.
[29]
C. Menendez, “Malaria during pregnancy: a oriority area of malaria research and control,” Current Molecular Medicine, vol. 6, no. 2, pp. 269–273, 2006.
[30]
F. Nosten, R. McGready, J. A. Simpson et al., “Effects of Plasmodium vivax malaria in pregnancy,” The Lancet, vol. 354, no. 9178, pp. 546–549, 1999.
[31]
J. R. Poespoprodjo, W. Fobia, E. Kenangalem et al., “Adverse pregnancy outcomes in an area where multidrug-resistant Plasmodium vivax and Plasmodium falciparum infections are endemic,” Clinical Infectious Diseases, vol. 46, no. 9, pp. 1374–1381, 2008.
[32]
N. Singh, M. M. Shukla, and V. P. Sharma, “Epidemiology of malaria in pregnancy in central India,” Bulletin of the World Health Organization, vol. 77, no. 7, pp. 567–572, 1999.
[33]
M. J. Rijken, R. McGready, M. E. Boel et al., “Malaria in pregnancy in the Asia-Pacific region,” The Lancet Infectious Diseases, vol. 12, no. 1, pp. 75–88, 2012.
[34]
A. Creasey, H. Giha, A. A. Hamad, I. M. El Hassan, T. G. Theander, and D. E. Arnot, “Eleven years of malaria surveillance in a Sudanese village highlights unexpected variation in individual disease susceptibility and outbreak severity,” Parasitology, vol. 129, no. 3, pp. 263–271, 2004.
[35]
A. C. Granja, F. Machungo, A. Gomes, S. Bergstr?m, and B. Brabin, “Malaria-related maternal mortality in urban Mozambique,” Annals of Tropical Medicine and Parasitology, vol. 92, no. 3, pp. 257–263, 1998.
[36]
A. M. van Eijk, J. G. Ayisi, F. O. ter Kuili et al., “Risk factors for malaria in pregnancy in an urban and peri-urban population in western Kenya,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 96, no. 6, pp. 586–592, 2002.
[37]
M. Fried and P. E. Duffy, “Adherence of Plasmodium falciparum to chondroitin sulfate A in the human placenta,” Science, vol. 272, no. 5267, pp. 1502–1504, 1996.
[38]
B. G. Gellin, C. V. Broome, W. F. Bibb, R. E. Weaver, S. Gaventa, and L. Mascola, “The epidemiology of listeriosis in the United States—1986,” American Journal of Epidemiology, vol. 133, no. 4, pp. 392–401, 1991.
[39]
J. L. Smith, “Foodborne infections during pregnancy,” Journal of Food Protection, vol. 62, no. 7, pp. 818–829, 1999.
[40]
A. Schuchat, K. A. Deaver, J. D. Wenger, et al., “Role of foods in sporadic listeriosis. I. Case-control study of dietary risk factors. The Listeria Study Group,” Journal of the American Medical Association, vol. 267, no. 15, pp. 2041–2045, 1992.
[41]
B. J. Silk, K. A. Date, K. A. Jackson, et al., “Invasive listeriosis in the Foodborne Diseases Active Surveillance Network (FoodNet), 2004–2009: further targeted prevention needed for higher-risk groups,” Clinical Infectious Diseases, supplement 5, pp. S396–S404, 2012.
[42]
E. Mylonakis, M. Paliou, E. L. Hohmann, S. B. Calderwood, and E. J. Wing, “Listeriosis during pregnancy: a case series and review of 222 cases,” Medicine, vol. 81, no. 4, pp. 260–269, 2002.
[43]
R. Pouillot, K. Hoelzer, K. Jackson, O. Henao, and B. J. Silk, “Relative risk of listeriosis in Foodborne Diseases Active Surveillance Network (FoodNet) Sites according to age, pregnancy, and ethnicity,” Clinical Infectious Diseases, vol. 54, supplement 5, pp. S405–S420, 2012.
[44]
V. Goulet, M. Hebert, C. Hedberg et al., “Incidence of listeriosis and related mortality among groups at risk of acquiring listeriosis,” Clinical Infectious Diseases, vol. 54, no. 5, pp. 652–660, 2012.
[45]
M. A. Kane, “Hepatitis viruses and the neonate,” Clinics in Perinatology, vol. 24, pp. 181–191, 1997.
[46]
A. Ornoy and A. Tenenbaum, “Pregnancy outcome following infections by coxsackie, echo, measles, mumps, hepatitis, polio and encephalitis viruses,” Reproductive Toxicology, vol. 21, no. 4, pp. 446–457, 2006.
[47]
M. S. Khuroo and S. Kamili, “Aetiology and prognostic factors in acute liver failure in India,” Journal of Viral Hepatitis, vol. 10, no. 3, pp. 224–231, 2003.
[48]
A. Kumar, M. Beniwal, P. Kar, J. B. Sharma, and N. S. Murthy, “Hepatitis E in pregnancy,” International Journal of Gynecology and Obstetrics, vol. 85, no. 3, pp. 240–244, 2004.
[49]
R. Aggarwal and K. Krawczynski, “Hepatitis E: an overview and recent advances in clinical and laboratory research,” Journal of Gastroenterology and Hepatology, vol. 15, no. 1, pp. 9–20, 2000.
[50]
S. Patra, A. Kumar, S. S. Trivedi, M. Puri, and S. K. Sarin, “Maternal and fetal outcomes in pregnant women with acute hepatitis E virus infection,” Annals of Internal Medicine, vol. 147, no. 1, pp. 28–33, 2007.
[51]
N. Jilani, B. C. Das, S. A. Husain et al., “Hepatitis E virus infection and fulminant hepatic failure during pregnancy,” Journal of Gastroenterology and Hepatology, vol. 22, no. 5, pp. 676–682, 2007.
[52]
S. P. B. Jaiswal, A. K. Jain, G. Naik, N. Soni, and D. S. Chitnis, “Viral hepatitis during pregnancy,” International Journal of Gynecology and Obstetrics, vol. 72, no. 2, pp. 103–108, 2001.
[53]
Z. A. Brown, L. A. Vontver, and J. Benedetti, “Genital herpes in pregnancy: risk factors associated with recurrences and asymptomatic viral shedding,” American Journal of Obstetrics and Gynecology, vol. 153, no. 1, pp. 24–30, 1985.
[54]
R. H. Allen and R. E. Tuomala, “Herpes simplex virus hepatitis causing acute liver dysfunction and thrombocytopenia in pregnancy,” Obstetrics and Gynecology, vol. 106, no. 5, part 2, pp. 1187–1189, 2005.
[55]
A. H. Kang and C. R. Graves, “Herpes simplex hepatitis in pregnancy: a case report and review of the literature,” Obstetrical and Gynecological Survey, vol. 54, no. 7, pp. 463–468, 1999.
[56]
R. A. Chase, J. C. Pottage Jr., M. H. Haber, G. Kistler, D. Jensen, and S. Levin, “Herpes simplex viral hepatitis in adults: two case reports and review of the literature,” Reviews of Infectious Diseases, vol. 9, no. 2, pp. 329–333, 1987.
[57]
H. Yaziji, T. Hill, T. C. Pitman, C. R. Cook, and G. R. Schrodt, “Gestational herpes simplex virus hepatitis,” Southern Medical Journal, vol. 90, no. 3, pp. 347–351, 1997.
[58]
W. Foulon, A. Naessens, S. Lauwers, F. De Meuter, and J.-J. Amy, “Impact of primary prevention on the incidence of toxoplasmosis during pregnancy,” Obstetrics and Gynecology, vol. 72, no. 3, part 1, pp. 363–366, 1988.
[59]
P. Jacquier, P. Hohlfeld, H. Vorkauf, and P. Zuber, “Epidemiology of toxoplasmosis in Switzerland: national study of seroprevalence monitored in pregnant women 1990-1991,” Schweizerische Medizinische Wochenschrift, vol. 65, pp. 29S–38S, 1995.
[60]
J. S. Remington and J. O. Klein, Eds., Infectious Disease of the Fetus and the Newborn Infant, W.B. Saunders Company, Philadelphia, Pa, USA, 1995.
[61]
M. Antoniou, H. Tzouvali, S. Sifakis et al., “Incidence of toxoplasmosis in 5532 pregnant women in Crete, Greece: management of 185 cases at risk,” European Journal of Obstetrics Gynecology and Reproductive Biology, vol. 117, no. 2, pp. 138–143, 2004.
[62]
M. M. Avelino, D. Campos Jr., J. D. C. B. De Parada, and A. M. De Castro, “Pregnancy as a risk factor for acute toxoplasmosis seroconversion,” European Journal of Obstetrics Gynecology and Reproductive Biology, vol. 108, no. 1, pp. 19–24, 2003.
[63]
A. M. Porto, M. M. Amorim, I. C. Coelho, and L. C. Santos, “Serologic profile of toxoplasmosis in pregnant women attended a teaching hospital in Recife,” Revista da Associa??o Médica Brasileira, vol. 54, pp. 242–248, 2008.
[64]
P. M. Zadik, K. KudesiaG., and A. D. Siddons, “Low incidence of primary infection with toxoplasma among women in Sheffield: a seroconversion study,” British Journal of Obstetrics and Gynaecology, vol. 102, no. 8, pp. 608–610, 1995.
[65]
T. E. Taha, G. A. Dallabetta, D. R. Hoover et al., “Trends of HIV-1 and sexually transmitted diseases among pregnant and postpartum women in urban Malawi,” AIDS, vol. 12, no. 2, pp. 197–203, 1998.
[66]
V. Leroy, P. Van De Perre, P. Lepage et al., “Seroincidence of HIV-1 infection in African women of reproductive age: a prospective cohort study in Kigali, Rwanda, 1988–1992,” AIDS, vol. 8, no. 7, pp. 983–986, 1994.
[67]
D. Moodley, T. M. Esterhuizen, T. Pather, V. Chetty, and L. Ngaleka, “High HIV incidence during pregnancy: compelling reason for repeat HlV testing,” AIDS, vol. 23, no. 10, pp. 1255–1259, 2009.
[68]
N. R. Mugo, R. Heffron, D. Donnell et al., “Increased risk of HIV-1 transmission in pregnancy: a prospective study among African HIV-1-serodiscordant couples,” AIDS, vol. 25, no. 15, pp. 1887–1895, 2011.
[69]
R. H. Gray, X. Li, G. Kigozi et al., “Increased risk of incident HIV during pregnancy in Rakai, Uganda: a prospective study,” The Lancet, vol. 366, no. 9492, pp. 1182–1188, 2005.
[70]
S. E. Reid, J. Y. Dai, J. Wang et al., “Pregnancy, contraceptive use, and HIV acquisition in HPTN 039: relevance for HIV prevention trials among African women,” Journal of Acquired Immune Deficiency Syndromes, vol. 53, no. 5, pp. 606–613, 2010.
[71]
C. S. Morrison, J. Wang, B. Van Der Pol, N. Padian, R. A. Salata, and B. A. Richardson, “Pregnancy and the risk of HIV-1 acquisition among women in Uganda and Zimbabwe,” AIDS, vol. 21, no. 8, pp. 1027–1034, 2007.
[72]
A. Berrebi, W. E. Kobuch, J. Puel et al., “Influence of pregnancy on human immunodeficiency virus disease,” European Journal of Obstetrics Gynecology and Reproductive Biology, vol. 37, no. 3, pp. 211–217, 1990.
[73]
M. Weisser, C. Rudin, M. Battegay, D. Pfluger, C. Kully, and M. Egger, “Does pregnancy influence the course of HIV infection? Evidence from two large Swiss cohort studies,” Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology, vol. 17, no. 5, pp. 404–410, 1998.
[74]
H. L. Minkoff, A. Willoughby, H. Mendez et al., “Serious infections during pregnancy among women with advanced human immunodeficiency virus infection,” American Journal of Obstetrics and Gynecology, vol. 162, no. 1, pp. 30–34, 1990.
[75]
R. Bessinger, R. Clark, P. Kissinger, J. Rice, and S. Coughlin, “Pregnancy is not associated with the progression of HIV disease in women attending an HIV outpatient program,” American Journal of Epidemiology, vol. 147, no. 5, pp. 434–440, 1998.
[76]
M.-M. Deschamps, J. W. Pape, M. Desvarieux et al., “A prospective study of HIV-seropositive asymptomatic women of childbearing age in a developing country,” Journal of Acquired Immune Deficiency Syndromes, vol. 6, no. 5, pp. 446–451, 1993.
[77]
D. V. Landers, B. M. De Tejada, and B. A. Coyne, “Immunology of HIV and pregnancy: the effects of each on the other,” Obstetrics and Gynecology Clinics of North America, vol. 24, no. 4, pp. 821–831, 1997.
[78]
D. A. Haake, P. C. Zakowski, D. L. Haake, and Y. J. Bryson, “Early treatment with acyclovir for varicella pneumonia in otherwise healthy adults: retrospective controlled study and review,” Reviews of Infectious Diseases, vol. 12, no. 5, pp. 788–798, 1990.
[79]
M. Siegel, “Congenital malformations following chickenpox, measles, mumps, and hepatitis. Results of a cohort study,” Journal of the American Medical Association, vol. 226, no. 13, pp. 1521–1524, 1973.
[80]
J. Balducci, J. F. Rodis, S. Rosengren, A. M. Vintzileos, G. Spivey, and C. Vosseller, “Pregnancy outcome following first-trimester varicella infection,” Obstetrics and Gynecology, vol. 79, no. 1, pp. 5–6, 1992.
[81]
S. Stagno and R. J. Whitley, “Herpesvirus infections of pregnancy. Part I: cytomegalovirus and Epstein-Barr virus infections,” New England Journal of Medicine, vol. 313, no. 20, pp. 1270–1274, 1985.
[82]
A. Nilsson and ?. ?rtqvist, “Severe varicella pneumonia in adults in Stockholm County 1980–1989,” Scandinavian Journal of Infectious Diseases, vol. 28, no. 2, pp. 121–123, 1996.
[83]
E. Miller, R. Marshall, and J. Vurdien, “Epidemiology, outcome and control of varicella-zoster infection,” Reviews in Medical Microbiology, vol. 4, no. 4, pp. 222–230, 1993.
[84]
T. F. Esmonde, G. Herdman, and G. Anderson, “Chickenpox pneumonia: an association with pregnancy,” Thorax, vol. 44, no. 10, pp. 812–815, 1989.
[85]
S. G. Paryani and A. M. Arvin, “Intrauterine infection with varicella-zoster virus after maternal varicella,” New England Journal of Medicine, vol. 314, no. 24, pp. 1542–1546, 1986.
[86]
J. H. Triebwasser, R. E. Harris, R. E. Bryant, and E. R. Rhoades, “Varicella pneumonia in adults. Report of seven cases and a review of literature,” Medicine, vol. 46, no. 5, pp. 409–423, 1967.
[87]
G. Enders, “Varicella-zoster virus infection in pregnancy,” Progress in Medical Virology, vol. 29, pp. 166–196, 1984.
[88]
P. E. Christensen, H. Schmidt, H. O. Bang, V. Andersen, B. Jordal, and O. Jensen, “Measles in virgin soil, Greenland 1951,” Danish Medical Bulletin, vol. 1, no. 1, pp. 2–6, 1954.
[89]
R. L. Atmar, J. A. Englund, and H. Hammill, “Complications of measles during pregnancy,” Clinical Infectious Diseases, vol. 14, no. 1, pp. 217–226, 1992.
[90]
M. E. Chiba, M. Saito, N. Suzuki, Y. Honda, and N. Yaegashi, “Measles infection in pregnancy,” Journal of Infection, vol. 47, no. 1, pp. 40–44, 2003.
[91]
J. E. Eberhart-Phillips, P. D. Frederick, R. C. Baron, and L. Mascola, “Measles in pregnancy: a descriptive study of 58 cases,” Obstetrics and Gynecology, vol. 82, no. 5, pp. 797–801, 1993.
[92]
M. Elamin Ali and H. M. Albar, “Measles in pregnancy: maternal morbidity and perinatal outcome,” International Journal of Gynecology and Obstetrics, vol. 59, no. 2, pp. 109–113, 1997.
[93]
H. Nishiura, “Smallpox during pregnancy and maternal outcomes,” Emerging Infectious Diseases, vol. 12, no. 7, pp. 1119–1121, 2006.