In this communication, Co/Cu substituted Ni-Zn ferrites processed through sol-gel synthesis using polyethylene glycol (PEG) as a chelating agent are studied, intending to aid in understanding and choosing the optimum ferrite material for high frequency applications. Lattice constant and average crystallite size have been estimated from FWHM of the X-ray diffraction peaks, and these parameters are understood by considering the ionic radii of the substituted as well as the replacing ions. Observed variations in saturation magnetization and initial permeability for these ferrites have been explained on the basis of anisotropy contribution for cobalt and segregation of copper at grain boundaries evident from scanning electron micrographs. 1. Introduction The increasing demand for ferrite materials for core applications having reduced size, weight, and cost necessitates to develop ferrites containing ultrafine particles with improved efficiency at high frequencies. Ferrites show interesting magnetic and electronic properties as the particle size decreases compared with those of the bulk ferrites. The extensive study on mixed ferrite systems reveals that Ni-Zn ferrites are well-known core materials suitable for high frequency applications up to 100?MHz due to their high value of saturation magnetization, moderate permeability, and high resistivity parameters responsible for low losses [1–4]. Though ultrafine particles provide large grain boundary area to develop resistivity by many folds, expected enhancement in magnetization is hindered by these tiny grains to extend the cooperative effects among the particles. This may be achieved by substitution of a diamagnetic impurity ion in Ni-Zn ferrites which tend to occupy tetrahedral sites or a ferromagnetic impurity having strong preference for octahedral sites of the spinel lattice supposed to be substituted. In case of nanoferrites, inversion of the ion occurs against its natural preference (in bulk ferrites) as reported earlier [3]. By considering this argument, in this communication, Cu/Co ions have been substituted, replacing nickel ions in sol-gel synthesized Ni-Zn ferrites using polyethylene glycol. PEG serves as a chelating agent in controlling the crystallite size by arresting the particles in the polymer matrix and facilitates homogeneous dispersion of ferrite nanoparticles. 2. Experimental Details The method of preparation of samples was described elsewhere [4]. X-ray diffraction (XRD) is used for the identification of the material phases and crystal structure, determination of average crystallite size
References
[1]
I. H. Gul, W. Ahmed, and A. Maqsood, “Electrical and magnetic characterization of nanocrystalline Ni-Zn ferrite synthesis by co-precipitation route,” Journal of Magnetism and Magnetic Materials, vol. 320, no. 3-4, pp. 270–275, 2008.
[2]
M. Popovici, C. Savii, D. Niznansky et al., “Nanocrystalline Ni-Zn ferrites prepared by sol-gel method,” Journal of Optoelectronics and Advanced Materials, vol. 5, no. 1, pp. 251–256, 2003.
[3]
A. M. Kumar, K. H. Rao, and J. M. Greneche, “M?ssbauer investigation on Ni-Zn nanoferrite with the highest saturation magnetization,” Journal of Applied Physics, vol. 105, no. 7, Article ID 073919, 5 pages, 2009.
[4]
A. M. Kumar, M. C. Varma, C. L. Dube, K. H. Rao, and S. C. Kashyap, “Development of Ni-Zn nanoferrite core material with improved saturation magnetization and DC resistivity,” Journal of Magnetism and Magnetic Materials, vol. 320, no. 14, pp. 1995–2000, 2008.
[5]
K. Kondo, T. Chiba, and S. Yamada, “Effect of microstructure on magnetic properties of Ni-Zn ferrites,” Journal of Magnetism and Magnetic Materials, vol. 254-255, pp. 541–543, 2003.
[6]
J. B. Nelson and D. P. Riley, “An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals,” Proceedings of the Physical Society, vol. 57, no. 3, pp. 160–176, 1945.
[7]
N. Rezlescu, E. Rezlescu, C.-L. Sava, F. Tudorache, and P. D. Popa, “Effects of some ionic substitutions on sintering, structure and humidity sensitivity of MgCu ferrite,” Physica Status Solidi A, vol. 201, no. 1, pp. 17–25, 2004.
[8]
S. T. Hugh, C. ONeill, and A. Navrotsky, “Simple spinels: crystallographic parameters, cation radii, lattice energies and cation distribution,” American Mineralogist, vol. 68, pp. 181–194, 1983.
[9]
R. D. Shannon and C. T. Prewitt, “Structural crystallography and crystal chemistry,” Acta Crystallographica B, vol. 25, pp. 925–946, 1969.
[10]
R. D. Shannon, “Crystal physics, diffraction, theoretical and general crystallography,” Acta Crystallographica A, vol. 32, pp. 751–767, 1976.
[11]
L. Neel, “Théorie du tra?nage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites,” Annals of Geophysics, vol. 5, pp. 99–136, 1949.
[12]
S. Ghosh, P. Ayyub, N. Kumar, S. A. Khan, and D. Banerjee, “In situ monitoring of electrical resistance of nanoferrite thin film irradiated by 190?MeV Au14+ ions,” Nuclear Instruments and Methods in Physics Research B, vol. 77, pp. 510–515, 2003.
[13]
A. Ghasemi, A. Ashrafizadeh, A. Paesano et al., “The role of copper ions on the structural and magnetic characteristics of MgZn ferrite nanoparticles and thin films,” Journal of Magnetism and Magnetic Materials, vol. 322, no. 20, pp. 3064–3071, 2010.
[14]
J. Slama, A. Gruskova, M. Usakova, E. Usak, and R. Dosoudil, “Contribution to analysis of Cu-substituted NiZn ferrites,” Journal of Magnetism and Magnetic Materials, vol. 321, no. 19, pp. 3346–3351, 2009.
[15]
A. Globus, Journal of Physics, vol. C38-1, p. C1-1, 1977.
[16]
J. E. Burke, “Role of grain boundaries in sintering,” Journal of the American Ceramic Society, vol. 40, no. 3, pp. 80–85, 1957.