全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Synthesis and Characterization of Lithium-Substituted Cu-Mn Ferrite Nanoparticles

DOI: 10.1155/2013/910762

Full-Text   Cite this paper   Add to My Lib

Abstract:

The effect of Li substitution on the structural and magnetic properties of LixCu0.12Mn0.88?2xFe2+xO4 (x = 0.00, 0.10, 0.20, 0.30, 0.40, and 0.44) ferrite nanoparticles prepared by combustion technique has been investigated. Structural and surface morphology have been studied by X-ray diffractometer (XRD) and high-resolution optical microscope, respectively. The observed particle size of various LixCu0.12Mn0.88?2xFe2+xO4 is found to be in the range of 9?nm to 30?nm. XRD result confirms single-phase spinel structure for each composition. The lattice constant increases with increasing Li content. The bulk density shows a decreasing trend with Li substitution. The real part of initial permeability ( ) and the grain size (D) increase with increasing Li content. It has been observed that the higher the is, the lower the resonance frequency in LixCu0.12Mn0.88?2xFe2+xO4 ferrites is. 1. Introduction Ferrite nanoparticles have attracted a growing interest due to their potential applications such as magnetic recording [1], storage [2], and biotechnology [3]. In the most recent years, the interest in the use of nanoparticles in biomedical applications has greatly increased [4, 5]. The size and composition of nanoparticles influence the bio-application of the magnetic nanoparticles [6]. It is well known that the physical and chemical properties of the nanosized magnetic materials are quite different from those of the bulk ones due to their surface effect and quantum confinement effects. These nanoparticles can be obtained through precipitation of metallic salts in different media as polymers [7], organic acid or alcohol [8], sugars [9], and so forth. In particular, sol-gel, autocombustion, thermal decomposition, hydrothermal, ball milling, reverse micelle synthesis, solid-phase reaction, thermally activated solid state reaction, and pulsed laser deposition have been developed to prepare the single-domain MnFe2O4 nanoparticles [10–23]. Manganese ferrite (MnFe2O4) nanoparticles have become very popular due to their wide range of magnetic applications, such as recording devices, drug delivery, ferrofluid, biosensors, and catalysis [10, 24–27]. Recently, Deraz and Alarifi [28] have studied structural and magnetic properties of MnFe2O4 nanoparticles by combustion route. Till now, no other report has been found in the literature for Li-doped Cu-Mn ferrite. Lithium ferrites are low-cost materials which are attractive for microwave device applications. Hence, there has been a growing interest in Li-substituted Cu-Mn ferrite for microwave applications and high permeability

References

[1]  M. Suda, M. Nakagawa, T. Iyoda, and Y. Einaga, “Reversible photoswitching of ferromagnetic FePt nanoparticles at room temperature,” Journal of the American Chemical Society, vol. 129, no. 17, pp. 5538–5543, 2007.
[2]  B. O. Regan and M. Gratzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, pp. 737–740, 1991.
[3]  M. Shinkai, “Functional magnetic particles for medical application,” Journal of Bioscience and Bioengineering, vol. 94, no. 6, pp. 606–613, 2002.
[4]  C. C. Berry and A. S. G. Curtis, “Functionalisation of magnetic nanoparticles for applications in biomedicine,” Journal of Physics D, vol. 36, no. 13, article R198, 2003.
[5]  S. Mornet, S. Vasseur, F. Grasset, and E. Duguet, “Magnetic nanoparticle design for medical diagnosis and therapy,” Journal of Materials Chemistry, vol. 14, no. 14, pp. 2161–2175, 2004.
[6]  C. Corot, P. Robert, J. M. Ideé, and M. Port, “Recent advances in iron oxide nanocrystal technology for medical imaging,” Advanced Drug Delivery Reviews, vol. 58, no. 14, pp. 1471–1504, 2006.
[7]  J.-F. Berret, N. Schonbeck, F. Gazeau et al., “Controlled clustering of superparamagnetic nanoparticles using block copolymers: design of new contrast agents for magnetic resonance imaging,” Journal of the American Chemical Society, vol. 128, no. 5, pp. 1755–1761, 2006.
[8]  C. Sun, R. Size, and M. Zhang, “Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI,” Journal of Biomedical Materials Research A, vol. 78, no. 3, pp. 550–557, 2006.
[9]  R. Y. Hong, B. Feng, L. L. Chen, G. H. Li, Y. Zeng, and D. G. Wei, “Synthesis, characterization and MRI application of dextran-coated Fe3O4 magnetic nanoparticles,” Biochemical Engineering Journal, vol. 42, no. 3, pp. 290–300, 2008.
[10]  N. M. Deraz and S. Shaban, “Optimization of catalytic, surface and magnetic properties of nanocrystalline manganese ferrite,” Journal of Analytical and Applied Pyrolysis, vol. 86, pp. 173–179, 2009.
[11]  M. A. Ahmed, N. Okasha, and M. M. El-Sayed, “Enhancement of the physical properties of rare-earth-substituted Mn-Zn ferrites prepared by flash method,” Ceramics International, vol. 33, no. 1, pp. 49–58, 2007.
[12]  Q. M. Wei, J.-B. Li, Y.-J. Chen, and Y.-S. Han, “X-ray study of cation distribution in NiMn1?xFe2?xO4 ferrites,” Materials Characterization, vol. 47, no. 3-4, pp. 247–252, 2001.
[13]  M. H. Mahmoud, H. H. Hamdeh, J. C. Ho, M. J. O'Shea, and J. C. Walker, “Moessbauer studies of manganese ferrite fine particles processed by ball-milling,” Journal of Magnetism and Magnetic Materials, vol. 220, no. 2, pp. 139–146, 2000.
[14]  M. Muroi, R. Street, P. G. McCormick, and J. Amighian, “Magnetic properties of ultrafine MnFe2O4 powders prepared by mechanochemical processing,” Physical Review B, vol. 63, no. 18, Article ID 184414, 2001.
[15]  C. Li and Z. J. Zhang, “Size-dependent superparamagnetic properties of Mn spinel ferrite nanoparticles synthesized from reverse micelles,” Chemistry of Materials, vol. 13, no. 6, pp. 2092–2096, 2001.
[16]  M. H. Mahmoud, C. M. Williams, J. Cai, I. Siu, and J. C. Walker, “Investigation of Mn-ferrite films produced by pulsed laser deposition,” Journal of Magnetism and Magnetic Materials, vol. 261, no. 3, pp. 314–318, 2003.
[17]  C. Alvani, G. Ennas, A. La Barbera, G. Marongiu, F. Padella, and F. Varsano, “Synthesis and characterization of nanocrystalline MnFe2O 4: advances in thermochemical water splitting,” International Journal of Hydrogen Energy, vol. 30, no. 13-14, pp. 1407–1411, 2005.
[18]  D. Carta, M. F. Casula, A. Falqui et al., “A structural and magnetic investigation of the inversion degree in ferrite nanocrystals MFe2O4 (M = Mn, Co, Ni),” Journal of Physical Chemistry C, vol. 113, no. 20, pp. 8606–8615, 2009.
[19]  Y. Liu, Y. Zhang, J. D. Feng, C. F. Li, J. Shi, and R. Xiong, “Dependence of magnetic properties on crystallite size of CoFe2O4 nanoparticles synthesised by auto-combustion method,” Journal of Experimental Nanoscience, vol. 4, no. 2, pp. 159–168, 2009.
[20]  C. Cannas, A. Musinu, D. Peddis, and G. Piccaluga, “Synthesis and characterization of CoFe2O4 nanoparticles dispersed in a silica matrix by a sol-gel autocombustion method,” Chemistry of Materials, vol. 18, no. 16, pp. 3835–3842, 2006.
[21]  C. Cannas, A. Falqui, A. Musinu, D. Peddis, and G. Piccaluga, “CoFe2O4 nanocrystalline powders prepared by citrate-gel methods: synthesis, structure and magnetic properties,” Journal of Nanoparticle Research, vol. 8, no. 2, pp. 255–267, 2006.
[22]  L.J. Zhao, H.J. Zhang, Y. Xing et al., “Studies on the magnetism of cobalt ferrite nanocrystals synthesized by hydrothermal method,” Journal of Solid State Chemistry, vol. 181, no. 2, pp. 245–252, 2008.
[23]  Q. Liu, J.H. Sun, H.R. Long, X.Q. Sun, X.J. Zhong, and Z. Xu, “Hydrothermal synthesis of CoFe2O4 nanoplatelets and nanoparticles,” Materials Chemistry and Physics, vol. 108, no. 2-3, pp. 269–273, 2008.
[24]  S. R. Ahmed, S. B. Ogale, G. C. Papaefthymiou, R. Ramesh, and P. Kofinas, “Magnetic properties of CoFe2O4 nanoparticles synthesized through a block copolymer nanoreactor route,” Applied Physics Letters, vol. 80, no. 9, pp. 1616–1618, 2002.
[25]  I. Brigger, C. Dubernet, and P. Couvreur, “Nanoparticles in cancer therapy and diagnosis,” Advanced Drug Delivery Reviews, vol. 54, no. 5, pp. 631–651, 2002.
[26]  R. Arulmurugan, G. Vaidyanathan, S. Sendhilnathan, and B. Jeyadevan, “Mn-Zn ferrite nanoparticles for ferrofluid preparation: study on thermal-magnetic properties,” Journal of Magnetism and Magnetic Materials, vol. 298, no. 2, pp. 83–94, 2006.
[27]  J. B. Haun, T. J. Yoon, H. Lee, and R. Weissleder, “Magnetic nanoparticle biosensors,” Wiley Interdisciplinary Reviews, vol. 2, no. 3, pp. 291–304, 2010.
[28]  N. M. Deraz and A. Alarifi, “Controlled synthesis, physicochemical and magnetic properties of nano-crystalline Mn ferrite system,” International Journal of Electrochemical Science, vol. 7, pp. 5534–5543, 2012.
[29]  M. I. Mendelson, “Average grain size in polycrystalline ceramics,” Journal of the American Ceramic Society, vol. 52, no. 8, pp. 443–446, 1969.
[30]  C. Rath, S. Anand, R. P. Das et al., “Dependence on cation distribution of particle size, lattice parameter, and magnetic properties in nanosize Mn-Zn ferrite,” Journal of Applied Physics, vol. 91, no. 4, article 2211, 2002.
[31]  J. B. Nelson and D. P. Riley, “An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals,” Proceedings of the Physical Society, vol. 57, no. 3, pp. 160–177, 1945.
[32]  L. Vegard, “The constitution of mixed crystal and the space occupied by atom,” Zeitschrift für Physik, no. 17, pp. 17–26, 1921.
[33]  M. J. Winter, University of Sheffield, Yorkshire, UK, 1995–2006, http://www.webelements.com/.
[34]  B. D. Cullity, Elements of X-Ray Diffraction, Addison-Wesley, Reading, Mass, USA, 3rd edition, 1972.
[35]  A. Globus, P. Duplex, and G. M. Guyot, “Determination of initial magnetization curve from crystallites size and effective anisotropy field,” IEEE Transactions on Magnetics, vol. 7, no. 3, pp. 617–622, 1971.
[36]  J. L. Snoek, “Dispersion and absorption in magnetic ferrites at frequencies above one Mc/s,” Physica, vol. 17, no. 4, pp. 207–217, 1948.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133