Effect of steel fibres and low calcium fly ash on mechanical and elastic properties of geopolymer concrete composites (GPCC) has been presented. The study analyses the impact of steel fibres and low calcium fly ash on the compressive, flexural, split-tensile, and bond strengths of hardened GPCC. Geopolymer concrete mixes were prepared using low calcium fly ash and activated by alkaline solutions (NaOH and Na2SiO3) with solution to fly ash ratio of 0.35. Crimped steel fibres having aspect ratio of 50 with volume fraction of 0.0% to 0.5% at an interval of 0.1% by mass of normal geopolymer concrete are used. The entire tests were carried out according to test procedures given by the Indian standards wherever applicable. The inclusion of steel fibre showed the excellent improvement in the mechanical properties of fly ash based geopolymer concrete. Elastic properties of geopolymer concrete composites are also determined by various methods available in the literature and compared with each other. 1. Introduction Plain cement concrete suffers from numerous drawbacks such as low tensile strength, brittleness, unstable crack propagation, and low fracture resistance. Addition of steel fibres in plain cement concrete improves its mechanical and elastic properties. Hence, steel fibre reinforced concrete has been proved as a reliable and promising composite construction material having superior performance characteristics compared to conventional concrete. The rate of production of carbon dioxide released to the atmosphere is increasing due to the increased use of Portland cement in the construction. Each ton of Portland cement releases a ton of carbon dioxide into the atmosphere. The greenhouse gas emission from the production of Portland cement is about 1.35 billion tons annually, which is about 7% of the total greenhouse gas emissions. On the other side, fly ash is the waste material of coal based thermal power plant available abundantly but this poses disposal problem. Several hectares of valuable land are acquired by thermal power plants for the disposal of fly ash. With silicon and aluminium as the main constituents, fly ash has great potential as a cement replacing material in concrete. The concrete made with such industrial wastes is eco-friendly. Although the use of Portland cement is still unavoidable, many efforts are being made in order to reduce the use of Portland cement in concrete. Davidovits [2] have invented a new technology called geopolymer, in which cement is totally replaced by fly ash (Pozzolanic material) and activated by alkaline solution.
References
[1]
J. C. Halpin and S. W. Tsai, “Effects of environmental factors on composite materials,” Tech. Rep. AFML-TR, 1969.
[2]
J. Davidovits, “Geopolymers—inorganic polymeric new materials,” Journal of Thermal Analysis, vol. 37, no. 8, pp. 1633–1656, 1991.
[3]
J. Davidovits, “Geopolymers: man-made geosynthesis and the resulting development of very early high strength cement,” Journal of Material Education, vol. 16, no. 2, pp. 91–139, 1994.
[4]
D. Hardjito, S. E. Wallah, D. M. J. Sumajouw, and B. V. Rangan, “On the development of fly ash-based geopolymer concrete,” ACI Materials Journal, vol. 101, no. 6, pp. 467–472, 2004.
[5]
P. Chindaprasirt, T. Chareerat, and V. Sirivivatnanon, “Workability and strength of coarse high calcium fly ash geopolymer,” Cement and Concrete Composites, vol. 29, no. 3, pp. 224–229, 2007.
[6]
B. V. Rangan, “Mix design and production of flyash based geopolymer concrete,” Indian Concrete Journal, vol. 82, no. 5, pp. 7–15, 2008.
[7]
R. Anuradha, V. Sreevidya, R. Venkatasubramani, and B. V. Rangan, “Modified guidelines for geopolymer concrete mix design using Indian standards,” Asian Journal of Civil Engineering, vol. 8, pp. 353–369, 2012.
[8]
S. V. Patankar, S. S. Jamkar, and Y. M. Ghugal, “Effect of sodium hydroxide an flow and strength of fly ash based geopolymer mortar,” Journal of Structural Engineering, vol. 39, no. 1, pp. 7–12, 2012.
[9]
J. G. S. Van Jaarsveld, J. S. J. Van Deventer, and L. Lorenzen, “The potential use of geopolymeric materials to immobilise toxic metals—part I: theory and applications,” Minerals Engineering, vol. 10, no. 7, pp. 659–669, 1997.
[10]
K. A. Anuar, A. R. M. Ridzuanand, and S. Ismail, “Strength characteristic of gpc containing recycled concrete aggregate,” International Journal of Civil and Environmental Engineering, vol. 11, no. 1, pp. 81–85, 2011.
[11]
S. Alonso and A. Palomo, “Alkaline activation of metakaolin and calcium hydroxide mixtures: influence of temperature, activator concentration and solids ratio,” Materials Letters, vol. 47, no. 1-2, pp. 55–62, 2001.
[12]
D. M. J. Sumajouw, D. Hardjito, S. E. Wallah, and B. V. Rangan, “Fly ash-based geopolymer concrete: study of slender reinforced columns,” Journal of Materials Science, vol. 42, no. 9, pp. 3124–3130, 2007.
[13]
T. Bakharev, “Resistance of geopolymer materials to acid attack,” Cement and Concrete Research, vol. 35, no. 4, pp. 658–670, 2005.
[14]
D. Pernica, P. N. B. Reis, J. A. M. Ferreira, and P. Louda, “Effect of test conditions on the bending strength of a geopolymer- reinforced composite,” Journal of Materials Science, vol. 45, no. 3, pp. 744–749, 2010.
[15]
K. Vijai, R. Kumutha, and B. G. Vishnuram, “Properties of glass fibre reinforced geopolymer concrete composite,” Asian Journal of Civil Engineering, vol. 13, no. 4, pp. 511–520, 2012.
[16]
K. Vijai, R. Kumutha, and B. G. Vishnuram, “Effect of inclusion of steel fibres on the properties of geopolymer concrete composites,” Asian Journal of Civil Engineering, vol. 13, no. 3, pp. 377–385, 2012.
[17]
K. Vijai, R. Kumutha, and B. G. Vishnuram, “Experimental investigations on mechanical properties of geopolymer concrete composites,” Asian Journal of Civil Engineering, vol. 13, no. 1, pp. 89–96, 2012.
[18]
V. Sathish Kumar, B. S. Thomas, and A. Chtistopher, “An environmental study on the properties of glass fibre reinforced geopolymer concrete,” International Journal of Engineering Research and Applications, vol. 2, no. 6, pp. 722–726, 2012.
[19]
A. Bhowmick and S. Ghosh, “Effect of synthesizing parameters on workability and compressive strength of fly ash based geopolymer mortar,” International Journal of Civil and Structural Engineering, vol. 3, no. 2, pp. 168–177, 2012.
[20]
Y. M. Ghugal and S. A. Bhalchandra, “Performance of fibre reinforced high strength silica fume concrete,” Civil Engineering and Construction Review, vol. 22, pp. 32–44, 2009.
[21]
IS 2770, Methods of Testing Bond Strength in Reinforced Concrete- Part I, Bureau of Indian Standards, New Delhi, India, 1997.
[22]
IS 456, Code of Practice for Plain and Reinforced Concrete, Bureau of Indian Standards, New Delhi, India, 2000.
[23]
D. J. Hannant, Fibre Cements and Fibre Concretes, John Wiley and Sons, New York, NY, USA, 1978.
[24]
K. H. Tan, P. Paramasivam, and K. C. Tan, “Instantaneous and long-term deflections of steel fiber reinforced concrete beams,” ACI Structural Journal, vol. 91, no. 4, pp. 384–393, 1994.
[25]
M. Kakizaki, M. Harada, T. Soshiroda, S. Kubota, T. Ikeda, and Y. Kasai, “Strength and elastic modulus of recycled agreegate concrete,” in Proceedings of the 2nd International RILEM Synposium on Reuse of Demolition Waste, vol. 2, pp. 565–574, 1988.
[26]
Y. M. Ghugal, “Effects of steel fibres on various strengths of concrete,” Indian Concrete Journal, vol. 4, no. 3, pp. 23–29, 2003.