全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Growth of Hierarchically Structured High-Surface Area Alumina on FeCrAl Alloy Wires

DOI: 10.1155/2013/251495

Full-Text   Cite this paper   Add to My Lib

Abstract:

The formation of metastable alumina phases due to the oxidation of commercial FeCrAl alloy wires (0.5?mm thickness) at various temperatures and time periods has been examined. Samples were isothermally oxidised in air using a thermogravimetric analyzer (TGA). The morphology of the oxidised samples was analyzed using an Electronic Scanning Electron Microscope (ESEM) and X-ray on the surface analysis was done using an Energy Dispersive X-Ray (EDX) analyzer. The technique of X-Ray Diffraction (XRD) was used to characterize the phase of the oxide growth. The entire study showed that it was possible to grow high-surface area gamma alumina on the FeCrAl alloy wire surfaces when isothermally oxidised above 800°C over several hours. 1. Introduction Modern day car-exhaust systems use catalysts supported on ceramic monoliths. The last decade has seen a move towards metallic monoliths affording improved conversion and selectivity [1]. The use of catalysts supported on metal for packed bed catalytic reactions has been limited [2]. A structured catalyst with an alumina wash coat deposited on a highly conductive support, such as a FeCr alloy, has the potential to eliminate the heat transfer limitations in catalytic processes [1, 3–5]. An adherent alumina wash coat on metal supports remains a challenge both to ensure that the support is anchored when thermal cycling is inherent in the operation of fixed bed reactors and to ensure that sufficient active catalyst is available to maintain required conversions. The growth of transient metastable aluminas (θ-, γ-) on foils when oxidised at temperatures of 800°C–1000°C for varied time periods has been reported [6–8]. During the phase transformation of the transient aluminas, there are particular oxidation parameters which result in the growth of a γ-Al2O3 layer which has properties of high-surface area and porosity. The structured morphology helps improve the adherence of a coating layer and also forms a base for synthesis of other supporting catalysts [9]. This paper aims to give a better understanding of the growth of the γ-Al2O3 layer by the controlled oxidation of FeCrAl alloy wires on a small scale (TGA) and laboratory scale (muffle furnace). Conditions are optimised for wires of 0.5?mm thickness with characterisation using ESEM and EDX. Further characterisation of the alumina phase by XRD was attempted. 2. Experimental 2.1. Material FeCrAl alloy wires of thickness 0.5?mm with a chemical composition of 72.8% Fe, 22% Cr, 5% Al, 0.1% Y, and 0.1% Si were used. The wires were commercially manufactured and supplied by

References

[1]  P. Avila, M. Montes, and E. E. Miró, “Monolithic reactors for environmental applications: a review on preparation technologies,” Chemical Engineering Journal, vol. 109, no. 1–3, pp. 11–36, 2005.
[2]  V. Meille, S. Pallier, G. V. S. C. Bustamante, M. Roumanie, and J. P. Reymon, “Deposition of γ-Al2O3 layers on structured supports for the design of new catalytic reactors,” Applied Catalysis A, vol. 286, no. 2, pp. 232–238, 2005.
[3]  J. L. Williams, “Monolith structures, materials, properties and uses,” Catalysis Today, vol. 69, no. 1–4, pp. 3–9, 2001.
[4]  R. M. Heck, S. Gulati, and R. J. Farrauto, “The application of monoliths for gas phase catalytic reactions,” Chemical Engineering Journal, vol. 82, no. 1–3, pp. 149–156, 2001.
[5]  A. Bia?as, W. Osuch, W. ?asocha, and M. Najbar, “The influence of the Cr–Al foil texture on morphology of adhesive Al2O3 layers in monolithic environmental catalysts,” Catalysis Today, vol. 137, no. 2–4, pp. 489–492, 2008.
[6]  F. Liu, H. G?tlind, J. E. Svensson, L. G. Johansson, and M. Halvarsson, “Early stages of the oxidation of a FeCrAlRE alloy (Kanthal AF) at 900°C: a detailed microstructural investigation,” Corrosion Science, vol. 50, no. 8, pp. 2272–2281, 2008.
[7]  H. El Kadiri, R. Molins, Y. Bienvenu, and M. F. Horstemeyer, “Abnormal high growth rates of metastable aluminas on FeCrAl alloys,” Oxidation of Metals, vol. 64, no. 1-2, pp. 63–97, 2005.
[8]  J. Jedlinski, “The oxidation behaviour of FeCrAl “alumina forming” alloys at high temperatures,” Solid State Ionics, vol. 101–103, part 2, pp. 1033–1040, 1997.
[9]  V. Meille, “Review on methods to deposit catalysts on structured surfaces,” Applied Catalysis A, vol. 315, pp. 1–17, 2006.
[10]  D. Zhang, L. Zhang, B. Liang, and Y. Li, “Effect of acid treatment on the high-temperature surface oxidation behavior of FeCrAlloy foil used for methane combustion catalyst support,” Industrial and Engineering Chemistry Research, vol. 48, no. 10, pp. 5117–5122, 2009.
[11]  X. Wu, D. Weng, L. Xu, and H. Li, “Structure and performance of γ-alumina washcoat deposited by plasma spraying,” Surface and Coatings Technology, vol. 145, no. 1–3, pp. 226–232, 2001.
[12]  E. Airiskallio, E. Nurmi, M. H. Heinonen et al., “Third element effect in the surface zone of Fe-Cr-Al alloys,” Physical Review B, vol. 81, no. 3, Article ID 033105, 4 pages, 2010.
[13]  H. Asteman and M. Spiegel, “A comparison of the oxidation behaviours of Al2O3 formers and Cr2O3 formers at 700°C—oxide solid solutions acting as a template for nucleation,” Corrosion Science, vol. 50, no. 6, pp. 1734–1743, 2008.
[14]  G. Berthomé, E. N'Dah, Y. Wouters, and A. Galerie, “Temperature dependence of metastable alumina formation during thermal oxidation of FeCrAl foils,” Materials and Corrosion, vol. 56, no. 6, pp. 389–392, 2005.
[15]  L. R. Chapman, C. W. Vigor, and J. F. Watton, “Enhanced oxide whisker growth on peeled Al-containing stainless steel foil,” US Patent 4331631, 1982.
[16]  G. L. Vaneman and D. R. Sigler, “Accelerated whisker growth on iron-chromium-aluminum alloy foil,” US Patent 4915751, 1990.
[17]  C. Mennicke, D. R. Clarke, and M. Rühle, “Stress relaxation in thermally grown alumina scales on heating and cooling FeCrAl and FeCrAlY alloys,” Oxidation of Metals, vol. 55, no. 5-6, pp. 551–569, 2001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133