全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Crystal Growth and Characterization of a New NLO Material: p-Toluidine p-Toluenesulfonate

DOI: 10.1155/2013/680256

Full-Text   Cite this paper   Add to My Lib

Abstract:

Single crystals of p-Toluidine p-Toluenesulfonate (PTPT), an organic nonlinear optical (NLO) material, have been grown by slow evaporation method at room temperature using ethanol as solvent. The crystal system was confirmed from the single crystal X-ray diffraction analysis. The functional groups were identified using FTIR spectroscopy. UV-Vis-NIR spectrum showed that the UV cut-off wavelength of PTPT occurs at 295 nm and it has insignificant absorption in the wavelength region of 532–800?nm. The SHG efficiency of PTPT was measured by employing Kurtz and Perry powder technique using a Q-switched mode locked Nd: YAG laser emitting 1064?nm for the first time and it was found to be 52% of standard KDP. Thermal and mechanical properties of PTPT were examined by TG/DTA and Vickers microhardness test, respectively. 1. Introduction Materials with large nonlinear optical susceptibilities are of current interest in the area of harmonic generation and optical modulation. In recent years, some polar organic crystals, which form a noncentrosymmetric structure which exhibit second-order nonlinear optical properties that far surpassed those of the conventional materials, have led to the synthesis and evaluation of a wide range of potentially useful solids [1]. Materials showing high optical nonlinearity have potential applications in signal transmission, data storage, optical switching, laser printing, displays, inflorescence, photolithography, remote sensing, chemical and biological species detection, high resolution spectroscopy, medical diagnosis, and underwater monitoring and communication [2]. Different types of molecular and bulk materials have been examined for nonlinear optical properties. Organic nonlinear materials are attracting a great deal of attention, as they have large optical susceptibilities, inherent ultrafast response times, and high optical thresholds for laser power as compared with inorganic materials [3]. Organic molecules with significant nonlinear optical activity generally consist of a π-electron conjugated structure. The conjugated π-electron moiety provides a pathway for the entire length of conjugation under the perturbation of an external electric field. Fictionalization of both ends of the π-bond systems with appropriate electron donor and acceptor group can increase the asymmetric electronic distribution in either or both the ground and excited states, thus leading to an increased optical nonlinearity [4–7]. In the present investigation, we report the growth and characterization especially the SHG efficiency of p-Toluidine

References

[1]  P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Organic Molecules and Polymers, John Wiley & Sons, New York, NY, USA, 1991.
[2]  D. S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals, Academic Press, New York, NY, USA, 1987.
[3]  T. Pal, T. Kar, G. Bocelli, and L. Rigi, “Synthesis, growth, and characterization of L-arginine acetate crystal: a potential NLO material,” Crystal Growth and Design, vol. 3, no. 1, pp. 13–16, 2003.
[4]  R. T. Bailey, G. Bourhill, F. R. Cruickshank, D. Pugh, J. N. Sherwood, and G. S. Simpson, “The linear and nonlinear optical properties of the organic nonlinear material 4-nitro-4'-methylbenzylidene aniline,” Journal of Applied Physics, vol. 73, no. 4, pp. 1591–1597, 1993.
[5]  C. K. Lakshmana Perumal, A. Arulchakkaravarthi, N. P. Rajesh et al., “Synthesis, crystal growth and FTIR, NMR, SHG studies of 4-methoxy benzaldehyde-N-methyl-4-stilbazolium tosylate (MBST),” Journal of Crystal Growth, vol. 240, no. 1-2, pp. 212–217, 2002.
[6]  W. Yu, L. Yang, T.-L. Zhang et al., “Crystal structure and geometry-optimization study of 4-methyl-3′,5′-dinitro-4′-methyl benzylidene aniline,” Journal of Molecular Structure, vol. 794, no. 1-3, pp. 255–260, 2006.
[7]  K. Srinivasan, R. Biravaganesh, R. Gandhimathi, and P. Ramasamy, “Growth and characterization of NMBA (4-nitro-4′-methyl benzylidene aniline) single crystals,” Journal of Crystal Growth, vol. 236, no. 1-3, pp. 381–392, 2002.
[8]  R. J. Xu, “4-Meth-oxy-anilinium iodide,” Acta Crystallographica E, vol. 66, article o1794, 2010.
[9]  Y. le Fur, R. Masse, M. Z. Cherkaoui, and J. F. Nicuod, “Crystal structure of ethyl-2,6-dimethyl-4(1H)-pyridinone, trihydrate: a potential nonlinear optical crystalline organic material transparent till the near ultraviolet range,” Zeitschrift für Kristallographie, vol. 210, pp. 856–860, 1995.
[10]  V. Krishnakumar, R. Nagalakshmi, and P. Janaki, “Growth and spectroscopic characterization of a new organic nonlinear optical crystal-8-hydroxyquinoline,” Spectrochimica Acta A, vol. 61, no. 6, pp. 1097–1103, 2005.
[11]  K. Jagannathan, S. Kalainathan, and T. Gnanasekaran, “Microhardness studies on 4-Dimethylamino-N-methyl 4-Stilbazolium Tosylate (DAST),” Materials Letters, vol. 61, no. 23-24, pp. 4485–4488, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133