全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Enhancement of Mechanical and Thermal Properties of Polylactic Acid/Polycaprolactone Blends by Hydrophilic Nanoclay

DOI: 10.1155/2013/816503

Full-Text   Cite this paper   Add to My Lib

Abstract:

The effects of hydrophilic nanoclay, Nanomer PGV, on mechanical properties of Polylactic Acid (PLA)/Polycaprolactone (PCL) blends were investigated and compared with hydrophobic clay, Montmorillonite K10. The PLA/PCL/clay composites were prepared by melt intercalation technique and the composites were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Dynamic Mechanical Analysis (DMA), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). FTIR spectra indicated that formation of hydrogen bond between hydrophilic clay with the matrix. XRD results show that shifting of basal spacing when clay incorporated into polymer matrix. TEM micrographs reveal the formation of agglomerate in the composites. Based on mechanical properties results, addition of clay Nanomer PGV significantly enhances the flexibility of PLA/PCL blends about 136.26%. TGA showed that the presence of clay improve thermal stability of blends. DMA show the addition of clay increase storage modulus and the presence of clay Nanomer PGV slightly shift two of blends become closer suggest that the presence of clay slightly compatibilizer the PLA/PCL blends. SEM micrographs revealed that presence of Nanomer PGV in blends influence the miscibility of the blends. The PLA/PCL blends become more homogeneous and consist of single phase morphology. 1. Introduction Petroleum-based polymers such as polypropylene (PP), polyethylene (PE), and polystyrene (PS) cause major drawback to environment as these polymers tend to accumulate in disposal system due to these polymers are nondegradable. Therefore, biodegradable polymer attracted the attention of researcher as biodegradable polymer seems to be the best solution to this problem. A wide range of natural or synthetic polymers degrade by hydrolytic (polyglycolide, polylactides, polydioxanone, Polycaprolactone, polyhydroxyalkanoates) or enzymatic (polysaccharides, protein, polyamino acids) route [1]. Although these polymers have wide range of mechanical properties and degradation rate, inappropriate stiffness or degradation rate restrict their application, therefore, blending with other polymers, copolymerization or adding plasticizer can be used to tune the properties of these polymers according to application requirements [2]. Polylactic acid (PLA) is biodegradable polymer produced from renewable resources as PLA is obtained from polymerization of lactic acid monomer, a fermentation product obtained from corn starch by bacterial fermentation [3]. PLA has good

References

[1]  L. S. Nair and C. T. Laurencin, “Biodegradable polymers as biomaterials,” Progress in Polymer Science, vol. 32, no. 8-9, pp. 762–798, 2007.
[2]  A. C. Vieira, A. T. Marques, R. M. Guedes, and V. Tita, “Material model proposal for biodegradable materials,” Procedia Engineering, vol. 10, pp. 1597–1602, 2011.
[3]  B. Gupta, N. Revagade, and J. Hilborn, “Poly(lactic acid) fiber: an overview,” Progress in Polymer Science, vol. 32, no. 4, pp. 455–482, 2007.
[4]  H. Balakrishnan, A. Hassan, M. U. Wahit, A. A. Yussuf, and S. B. A. Razak, “Novel toughened polylactic acid nanocomposite: mechanical, thermal and morphological properties,” Materials and Design, vol. 31, no. 7, pp. 3289–3298, 2010.
[5]  H. Fukuzaki, M. Yoshida, M. Asano et al., “Synthesis of low-molecular-weight copoly(l-lactic acid/ε-caprolactone) by direct copolycondensation in the absence of catalysts, and enzymatic degradation of the polymers,” Polymer, vol. 31, no. 10, pp. 2006–2014, 1990.
[6]  D. W. Grijpma and A. J. Pennings, “(Co)polymers of L-lactide, 1. Synthesis, thermal properties and hydrolytic degradation,” Macromolecular Chemistry and Physics, vol. 195, no. 5, pp. 1633–1647, 1994.
[7]  H. Chen, M. Pyda, and P. Cebe, “Non-isothermal crystallization of PET/PLA blends,” Thermochimica Acta, vol. 492, no. 1-2, pp. 61–66, 2009.
[8]  T. Yokohara and M. Yamaguchi, “Structure and properties for biomass-based polyester blends of PLA and PBS,” European Polymer Journal, vol. 44, no. 3, pp. 677–685, 2008.
[9]  V. S. G. Silverajah, N. A. Ibrahim, W. W. M. Z. Yunus, H. A. Hassan, and C. B. Woei, “A comparative study on the mechanical, thermal and morphological characterization of poly(lactic acid)/epoxidized palm oil blend,” International Journal of Molecular Sciences, vol. 13, no. 5, pp. 5878–5898, 2012.
[10]  Y. Phuphuak and S. Chirachanchai, “Simple preparation of multi-branched poly(l-lactic acid) and its role as nucleating agent for poly(lactic acid),” Polymer, vol. 54, no. 2, pp. 572–582, 2013.
[11]  S. Ochi, “Mechanical properties of kenaf fibers and kenaf/PLA composites,” Mechanics of Materials, vol. 40, no. 4-5, pp. 446–452, 2008.
[12]  J.-W. Rhim, S.-I. Hong, and C.-S. Ha, “Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films,” LWT—Food Science and Technology, vol. 42, no. 2, pp. 612–617, 2009.
[13]  M. A. Woodruff and D. W. Hutmacher, “The return of a forgotten polymer—polycaprolactone in the 21st century,” Progress in Polymer Science, vol. 35, no. 10, pp. 1217–1256, 2010.
[14]  J.-T. Yeh, C.-J. Wu, C.-H. Tsou et al., “Study on the crystallization, miscibility, morphology, properties of poly(lactic acid)/poly(ε-caprolactone) blends,” Polymer, vol. 48, no. 6, pp. 571–578, 2009.
[15]  D. Wu, Y. Zhang, M. Zhang, and W. Zhou, “Phase behavior and its viscoelastic response of polylactide/poly(ε-caprolactone) blend,” European Polymer Journal, vol. 44, no. 7, pp. 2171–2183, 2008.
[16]  F. Tuba, L. Oláh, and P. Nagy, “Characterization of reactively compatibilized poly(d,l-lactide)/poly(ε-caprolactone) biodegradable blends by essential work of fracture method,” Engineering Fracture Mechanics, vol. 78, no. 17, pp. 3123–3133, 2011.
[17]  W. H. Hoidy, M. B. Ahmad, E. A. J. Al-Mulla, and N. A. B. Ibrahim, “Preparation and characterization of polylactic acid/polycaprolactone clay nanocomposites,” Journal of Applied Sciences, vol. 10, no. 2, pp. 97–106, 2010.
[18]  J. Madejová and P. Komadel, “Baseline studies of the clay minerals society source clays: infrared methods,” Clays and Clay Minerals, vol. 49, no. 5, pp. 410–432, 2001.
[19]  R. Ravisankar, S. Kiruba, P. Eswaran, G. Senthilkumar, and A. Chandrasekaran, “Mineralogical characterization studies of ancient potteries of Tamilnadu, India by FT-IR spectroscopic technique,” E-Journal of Chemistry, vol. 7, no. 1, pp. S185–S190, 2010.
[20]  R. R. Tiwari, K. C. Khilar, and U. Natarajan, “Synthesis and characterization of novel organo-montmorillonites,” Applied Clay Science, vol. 38, no. 3-4, pp. 203–208, 2008.
[21]  A. K. Nikolaidis, D. S. Achilias, and G. P. Karayannidis, “Effect of the type of organic modifier on the polymerization kinetics and the properties of poly(methyl methacrylate)/organomodified montmorillonite nanocomposites,” European Polymer Journal, vol. 48, no. 2, pp. 240–251, 2012.
[22]  N. A. Ibrahim, B. W. Chieng, and W. M. Z. Wan Yunus, “Morphology, thermal and mechanical properties of biodegradable poly(butylene succinate)/poly(butylene adipate-co-terephthalate)/clay nanocomposites,” Polymer, vol. 49, no. 15, pp. 1571–1580, 2010.
[23]  H. Essawy and D. El-Nashar, “The use of montmorillonite as a reinforcing and compatibilizing filler for NBR/SBR rubber blend,” Polymer Testing, vol. 23, no. 7, pp. 803–807, 2004.
[24]  S. N. Sathe, G. S. Srinivasa Rao, K. V. Rao, and S. Devi, “The effect of composition on morphological, thermal, and mechanical properties of polypropylene/nylon-6/polypropylene-g-butyl acrylate blends,” Polymer Engineering and Science, vol. 36, no. 19, pp. 2443–2450, 1996.
[25]  J. Wang and R. Pyrz, “Prediction of the overall moduli of layered silicate-reinforced nanocomposites-part I: basic theory and formulas,” Composites Science and Technology, vol. 64, no. 7-8, pp. 925–934, 2004.
[26]  Z. Yu, J. Yin, S. Yan, Y. Xie, J. Ma, and X. Chen, “Biodegradable poly(l-lactide)/poly(ε-caprolactone)-modified montmorillonite nanocomposites: preparation and characterization,” Polymer, vol. 48, no. 21, pp. 6439–6447, 2007.
[27]  T. Agag, T. Koga, and T. Takeichi, “Studies on thermal and mechanical properties of polyimide-clay nanocomposites,” Polymer, vol. 42, no. 8, pp. 3399–3408, 2001.
[28]  C. Silvestre, D. Duraccio, and S. Cimmino, “Food packaging based on polymer nanomaterials,” Progress in Polymer Science, vol. 36, no. 12, pp. 1766–1782, 2011.
[29]  K. Majeed, M. Jawaid, A. Hassan et al., “Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites,” Materials & Design, vol. 46, pp. 391–410, 2013.
[30]  D. Adame and G. W. Beall, “Direct measurement of the constrained polymer region in polyamide/clay nanocomposites and the implications for gas diffusion,” Applied Clay Science, vol. 42, no. 3-4, pp. 545–552, 2009.
[31]  K. Fukushima, D. Tabuani, and G. Camino, “Nanocomposites of PLA and PCL based on montmorillonite and sepiolite,” Materials Science and Engineering C, vol. 29, no. 4, pp. 1433–1441, 2009.
[32]  S. Boucard, J. Duchet, J. F. Gérard, P. Prele, and S. Gonzalez, “Processing of polypropylene-clay hybrids,” Macromolecular Symposia, vol. 194, no. 1, pp. 241–246, 2003.
[33]  X. Fu and S. Qutubuddin, “Polymer-clay nanocomposites: exfoliation of organophilic montmorillonite nanolayers in polystyrene,” Polymer, vol. 42, no. 2, pp. 807–813, 2001.
[34]  F. Cock, A. A. Cuadri, M. García-Morales, and R. Partai, “Thermal, rheological and microstructural characterisation of commercial biodegradable polyesters,” Polymer Testing, vol. 32, no. 4, pp. 716–723, 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133