全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Variations of Optical and Structural Properties of Thin Films with Thermal Treatment

DOI: 10.1155/2014/367950

Full-Text   Cite this paper   Add to My Lib

Abstract:

The effects of thermal treatment on the optical and structural properties of cobalt oxide thin films synthesized in the pores of PVP by chemical bath deposition technique were investigated. Films deposited were crystalline. The optical properties of the films were got from absorbance, transmittance reflectance, refractive index, absorption coefficient, and extinction coefficient measurements. The synthesized films turned out to be cobalt oxyhydroxide , CoO(OH), nanocrystals. The crystals obtained were of size 41.84?nm; however, as annealing temperature increased, the size decreased to 16.28?nm. The absorption coefficient, refractive index, and extinction coefficient were found to increase with increase in annealing temperature though not sequentially. For the same energy ranges of the incident photons, the absorption coefficient and refractive index ranged from 0.2 to 1.8 and from 1.4 to 2.3, respectively. The energy band-gap of the films ranged from 1.96?eV to 2.22?eV. 1. Introduction Five species of cobalt oxide (CoO2, Co2O3, CoO(OH), Co3O4, and CoO) have been reported [1, 2]. Both Co3O4 and CoO(OH) are easily obtained by thermally decomposing cobalt salts under oxidizing reactions [3]. Cobalt oxides have applications in superconductivity in electronics, electrochemical properties in microbatteries and high density batteries [4]. Cobalt oxyhydroxide, CoO(OH), has a hexagonal structure in which a divalent metal cation is located at an octahedral site which is coordinated by six hydroxyl oxygen [2]. CoO(OH) has been proposed as an alternative material for CO detection at low temperatures, for improving Co3O4-based gas sensor [5]. Well-spread CoO(OH) can be used as the conductive network in rechargeable alkaline batteries [6]. CoO(OH) is a promising material for fuel cells [7] and capacitors [8]. Generally, cobalt oxide materials can be deposited using several techniques, such as precipitation, sputtering, pulsed laser deposition, spray pyrolysis, sol-gel, hydrothermal synthesis, and electrochemical deposition [9]. But chemical bath deposition (CBD) technique is one of the simplest, cheapest, cost saving, convenient, and highly reproducible techniques that can be used for this deposition. It has been well known as a prevalent low temperature aqueous technique for directly depositing large area thin films of semiconductors [10]. It can be used for deposition of both conducting and nonconducting layers from solutions by electrochemical processes, without application of external fields [11]. CBD has the following advantages: it allows films to be deposited

References

[1]  H. Yamaura, K. Moriya, N. Miura, and N. Yamazoe, “Mechanism of sensitivity promotion in CO sensor using indium oxide and cobalt oxide,” Sensors and Actuators B, vol. 65, no. 1–3, pp. 39–41, 2000.
[2]  C.-W. Tang, C.-B. Wang, and S.-H. Chien, “Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS,” Thermochimica Acta, vol. 473, no. 1-2, pp. 68–73, 2008.
[3]  T. Pauporte, L. Mendoza, M. Cassir, M. C. Bernard, and J. Chivot, “Direct low-temperature deposition of crystallized CoOOH films by potentiostatic electrolysis,” Journal of the Electrochemical Society, vol. 152, no. 2, pp. C49–C53, 2005.
[4]  C. M. Lampert and C. G. Granqvist, Large-Area Chromogenics: Materials and Devices for Transmittance Control, vol. 4 of SPIE Institutes for Advanced Optical Technologies, SPIE Optical Engineering Press, Bellingham, Wash, USA, 1990.
[5]  R. J. Wu, J.-G. Wu, T.-K. Tsai, and C.-T. Yeh, “Use of cobalt oxide CoOOH in a carbon monoxide sensor operating at low temperatures,” Sensors and Actuators B, vol. 120, no. 1, pp. 104–109, 2006.
[6]  R. van Zee, Y. Hamrick, S. Li, and W. Weltner Jr., “Cobalt, rhodium, and iridium dioxide molecules and walsh-type rules,” The Journal of Physical Chemistry, vol. 96, no. 18, pp. 7247–7251, 1992.
[7]  C. Mansour, T. Pauporté, A. Ringuedé, V. Albin, and M. Cassir, “Protective coating for MCFC cathode: low temperature potentiostatic deposition of CoOOH on nickel in aqueous media containing glycine,” Journal of Power Sources, vol. 156, no. 1, pp. 23–27, 2006.
[8]  H. Zheng, F. Tang, M. Lim et al., “Electrochemical behavior of carbon-nanotube/cobalt oxyhydroxide nanoflake multilayer films,” Journal of Power Sources, vol. 193, no. 2, pp. 930–934, 2009.
[9]  I. Kelp?ait?, J. Baltru?aitis, and E. Valatka, “Electrochemical deposition of porous cobalt oxide films on AISI 304 type steel,” Materials Science, vol. 17, no. 3, pp. 236–243, 2011.
[10]  R. S. Mane and C. D. Lokhande, “Chemical deposition method for metal chalcogenide thin films,” Materials Chemistry and Physics, vol. 65, no. 1, pp. 1–31, 2000.
[11]  K. L. Chopra and S. R. Das, Thin Film Solar Cells, Plenum Press, London, UK, 1983.
[12]  M. O. Nwodo, S. C. Ezugwu, F. I. Ezema, R. U. Osuji, and P. U. Asogwa, “Effect of thermal annealing on the optical and structural, properties of PbO thin film,” Journal of Optoelectroncs and Biomedical Materials, vol. 3, no. 4, pp. 95–100, 2011.
[13]  J. I. Pankove, Optical Processes in Semiconductors, Prentice-Hall, Eaglewood, NJ, USA, 1971.
[14]  R. A. Chikwenze and M. N. Nnabuchi, “The effect of Pb2+ precursor concentration on the optical and solid state properties of annealed PbSe thin films grown by solution growth method,” Journal of Optoelectronics and Advanced Materials, vol. 12, no. 12, pp. 2363–2368, 2010.
[15]  E. Vigil, L. Saadoun, J. A. Ayllón, X. Domènech, I. Zumeta, and R. Rodríguez-Clemente, “TiO2 thin film deposition from solution using microwave heating,” Thin Solid Films, vol. 365, no. 1, pp. 12–18, 2000.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133