Samarium doped calcium hydrogen phosphate was synthesized as single crystal by room temperature solution growth technique, namely, silica gel technique. The kinetics of the growth parameters was studied with regard to variation of pH, dopant concentration, gel ageing, and upper reactant concentration. The optimum conditions for the growth of good quality single crystal were worked out. Single crystal X-ray diffraction analysis establishes that the crystal belongs to monoclinic system. The density observed by the flotation method is greater than the density of the reported pure calcium hydrogen phosphate thereby suggesting the incorporation of the dopant (Sm) ion into the lattice of host (CHP). Thermal analysis gave two sharp endothermic peaks which are due to partial dehydration and phase transition, respectively. Dielectric studies establish a shift in the Curie temperature from 355 to 370°C only at higher frequencies thereby suggesting the relaxational behavior of the material. 1. Introduction Rare earth phosphate crystals are interesting materials as they find wide technological applications on account of their ferroelectric, piezoelectric, optical, and other important properties whereas phosphoric acid serves as the base for the development of new class of materials. Calcium hydrogen phosphate dihydrate [CaHPO4 2H2O], also known as Brushite minerals, is a stable form of calcium phosphate [1]. Recent studies used it as a precursor to form apatite [Ca10(PO4)6(OH)2], an important bone forming mineral, as it contains 23% calcium in its anhydrous form. Brushite mineral has been found under various pathological conditions including kidney stones and some forms of arthritis [2, 3]. It was reported that the mineral deposits in the kidney contain various phases of calcium salts such as calcium oxalate and calcium phosphate [4]. Accordingly, it has been postulated that Brushite is a transient precursor for phases such as octacalcium phosphate and hydroxylapatite. Thus, calcium phosphate minerals are thought to be the initiator of stone formation in the kidney and/or bladder under favorable physiological environment. Brushite phase precipitates most readily in urine environments at pH less than 6.9, so it has been postulated that Brushite enables the nucleation of calcium oxalate monohydrate (COM), the major component of kidney stones [5]. Recently in 2012 investigations of kidney stones obtained from some patients of India showed the concentration of ten elements, namely, Ca, Na, K, Mn, Co, Cr, Zn, Br, Sm, and Cl [6] in the exploratory phase and a positive
References
[1]
V. S. Joshi and M. J. Joshi, “FTIR spectroscopic, thermal and growth morphological studies of calcium hydrogen phosphate dihydrate crystals,” Crystal Research and Technology, vol. 38, no. 9, pp. 817–821, 2003.
[2]
V. S. Joshi, B. B. Parekh, M. J. Joshi, and A. B. Vaidya, “Herbal extracts of Tribulus terrestris and Bergenia ligulata inhibit growth of calcium oxalate monohydrate crystals in vitro,” Journal of Crystal Growth, vol. 275, no. 1-2, pp. 1403–1408, 2005.
[3]
V. S. Joshi, B. B. Parekh, M. J. Joshi, and A. D. B. Vaidya, “Inhibition of the growth of urinary calcium hydrogen phosphate dihydrate crystals with aqueous extracts of Tribulus terrestris and Bergenia ligulata,” Urological Research, vol. 33, no. 2, pp. 80–86, 2005.
[4]
K. C. Joseph, B. B. Parekh, and M. J. Joshi, “Inhibition of growth of urinary type calcium hydrogen phosphate dihydrate crystals by tartaric acid and tamarind,” Current Science, vol. 88, no. 8, pp. 1232–1238, 2005.
[5]
D. R. Basavaraj, C. S. Biyani, A. J. Browning, and J. J. Cartledge, “The role of urinary kidney stone inhibitors and promoters in the pathogenesis of calcium containing renal stones,” EAU-EBU Update Series, vol. 5, no. 3, pp. 126–136, 2007.
[6]
A. Shrivastava, Annual Report of UGC-DAE Consortium for Scientific Research University Campus, 17, Indore (2011-2012).
[7]
M. Rak, N. N. Eremin, T. A. Eremina et al., “On the mechanism of impurity influence on growth kinetics and surface morphology of KDP crystals. I. Defect centres formed by bivalent and trivalent impurity ions incorporated in KDP structure—theoretical study,” Journal of Crystal Growth, vol. 273, no. 3-4, pp. 577–585, 2005.
[8]
K. K. Bamzai, S. Suri, and V. Singh, “Synthesis, characterization, thermal and dielectric properties of pure and cadmium doped calcium hydrogen phosphate,” Materials Chemistry and Physics, vol. 135, pp. 158–167, 2012.
[9]
V. S. Dorozhkin, “Nanodimensional and nanocrystalline calcium orthophosphates,” The American Journal of Biomedical Engineering, vol. 2, pp. 48–97, 2012.
[10]
G. Berend and A. J. Hegedüs, “Thermoanalytische untersuchung von sekundarem calcium phosphatidihydrat,” Thermochimica Acta, vol. 11, pp. 367–379, 1975.
[11]
F. Tamimi-Mari?o, J. Mastio, C. Rueda, L. Blanco, and E. López-Cabarcos, “Increase of the final setting time of brushite cements by using chondroitin 4-sulfate and silica gel,” Journal of Materials Science: Materials in Medicine, vol. 18, no. 6, pp. 1195–1201, 2007.
[12]
K. Rajendran and C. Dale Keefe, “Growth and characterization of calcium hydrogen phosphate dihydrate crystals from single diffusion gel technique,” Crystal Research and Technology, vol. 45, no. 9, pp. 939–945, 2010.
[13]
G. E. Pike, “ac conductivity of scandium oxide and a new hopping model for conductivity,” Physical Review B, vol. 6, no. 4, pp. 1572–1580, 1972.
[14]
S. K. Arora, V. Patel, R. G. Patel, B. Amin, and A. Kothari, “Electrical characterization of strontium tartrate single crystals,” Journal of Physics and Chemistry of Solids, vol. 65, no. 5, pp. 965–973, 2004.
[15]
E. D. Politova, V. V. Ivanova, G. M. Kaleva et al., “Dielectric and piezoelectric properties of the lead-based perovskite ceramics,” Ferroelectrics, vol. 313, pp. 129–133, 2004.