The main goal of this study was to evaluate the performance of new adsorbent, treated Peganum harmala-L seeds (TPHS), for the removal of Ni (II) from aqueous solution. Batch experiments were performed as a function of various experimental parameters. The adsorption studies included both equilibrium adsorption isotherms and kinetics. Equilibrium data fitted very well with the Langmuir isotherm model. Maximum adsorption capacity was determined 91.74?mg/g at pH 7. Kinetics studies showed better applicability for pseudo-second-order model for both adsorbents. The negative value of confirmed the feasibility and spontaneity of TPHS for Ni (II) adsorption. 1. Introduction Removal of heavy metals from wastewaters and industrial wastes has become a very important environmental issue. Nickel salts are commonly used in silver refineries, electroplating, zinc base casting, storage battery industries, printing, and in the production of some alloys that discharge significant amount of nickel in various forms to the environment. At higher concentrations, Ni (II) causes lung, nose, and bone cancer; headache; dizziness; nausea and vomiting; chest pain; tightness of the chest; dry cough and shortness of breath; rapid respiration; cyanosis; and extreme weakness. Hence, it is essential to remove Ni (II) from industrial wastewaters before it is discharged into natural water sources [1]. Adsorption is considered as effective, efficient, and economic method for water purification [2]. Since the performance of an adsorptive separation is directly dependent on the quality and cost effectiveness of the adsorbent, the last decade has seen a continuous improvement in the development of effective noble adsorbents in the form of activated carbons [3], zeolites [4], clay minerals [5], chitosan [6], lignocelluloses [7], natural inorganic minerals [8], and so forth. Adsorption onto activated carbon (AC) has proven to be one of the most effective and reliable physicochemical treatment methodologies. AC from cheap and readily available sources has been successively employed for removal of heavy metals [9]. There is only limited research on the preparation of activated carbons or modified natural adsorbent using Peganum harmala-L and its application for removing nickel from wastewaters. Peganum harmala, commonly called Esfand, Wild rue, Syrian rue, African rue, is a plant of the family Nitrariaceae. This plant is native from the eastern Iranian region west to India. Peganum harmala-L is abundant and inexpensive in Iran. However, microorganism-based and other biomasses often need to be
References
[1]
C. Lu, C. Liu, and G. P. Rao, “Comparisons of sorbent cost for the removal of Ni2+ from aqueous solution by carbon nanotubes and granular activated carbon,” Journal of Hazardous Materials, vol. 151, no. 1, pp. 239–246, 2008.
[2]
V. K. Gupta and A. Nayak, “Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles,” Chemical Engineering Journal, vol. 180, pp. 81–90, 2012.
[3]
X. Huang, N.-Y. Gao, and Q.-L. Zhang, “Thermodynamics and kinetics of cadmium adsorption onto oxidized granular activated carbon,” Journal of Environmental Sciences, vol. 19, no. 11, pp. 1287–1292, 2007.
[4]
M. R. Panuccio, A. Sorgonà, M. Rizzo, and G. Cacco, “Cadmium adsorption on vermiculite, zeolite and pumice: batch experimental studies,” Journal of Environmental Management, vol. 90, no. 1, pp. 364–374, 2009.
[5]
J. Hizal and R. Apak, “Modeling of cadmium(II) adsorption on kaolinite-based clays in the absence and presence of humic acid,” Applied Clay Science, vol. 32, no. 3-4, pp. 232–244, 2006.
[6]
J. T. Bamgbose, S. Adewuyi, O. Bamgbose, and A. A. Adetoye, “Adsorption kinetics of cadmium and lead by chitosan,” African Journal of Biotechnology, vol. 9, no. 17, pp. 2560–2565, 2010.
[7]
E. W. Shin, K. G. Karthikeyan, and M. A. Tshabalala, “Adsorption mechanism of cadmium on juniper bark and wood,” Bioresource Technology, vol. 98, no. 3, pp. 588–594, 2007.
[8]
S. Kocaoba, “Adsorption of Cd(II), Cr(III) and Mn(II) on natural sepiolite,” Desalination, vol. 244, no. 1–3, pp. 24–30, 2009.
[9]
H. Kalavathy, B. Karthik, and L. R. Miranda, “Removal and recovery of Ni and Zn from aqueous solution using activated carbon from Hevea brasiliensis: batch and column studies,” Colloids and Surfaces B: Biointerfaces, vol. 78, no. 2, pp. 291–302, 2010.
[10]
A. Bhatnagar and A. K. Minocha, “Biosorption optimization of nickel removal from water using Punica granatum peel waste,” Colloids and Surfaces B: Biointerfaces, vol. 76, no. 2, pp. 544–548, 2010.
[11]
S. Lagergren, “Zur theorie der sogenannten adsorption gel?ster stoffe, Kungliga Svenska Vetenskapsakademiens,” Handlingar, vol. 24, no. 4, pp. 1–39, 1898.
[12]
Y. S. Ho and G. McKay, “Sorption of dye from aqueous solution by peat,” Chemical Engineering Journal, vol. 70, no. 2, pp. 115–124, 1998.
[13]
W. J. Weber and J. C. Morris, “Kinetics of adsorption on carbon from solution,” Journal of the Sanitary Engineering Division, vol. 89, no. 2, pp. 31–59, 1963.
[14]
I. Langmuir, “The adsorption of gases on plane surfaces of glass, mica and platinum,” The Journal of the American Chemical Society, vol. 40, no. 9, pp. 1361–1403, 1918.
[15]
K. R. Hall, L. C. Eagleton, A. Acrivos, and T. Vermeulen, “Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions,” Industrial and Engineering Chemistry Fundamentals, vol. 5, no. 2, pp. 212–223, 1966.
[16]
H. M. F. Freundlich, “über die adsorption in l?sungen,” Ber Zeitschrift für Physikalische Chemie A, vol. 57, pp. 385–470, 1906.
[17]
M. Temkin, “Die gasadsorption und der nernstsche w?rmesatz,” Acta Physicochimica URSS, vol. 1, no. 1, pp. 36–52, 1934.
[18]
M. Ghasemi, Mu. Naushad, N. Ghasemi, and Y. Khosravi-fard, “A novel agricultural waste based adsorbent for the removal of Pb(II) from aqueous solution: kinetics, equilibrium and thermodynamic studies,” Journal of Industrial and Engineering Chemistry, vol. 20, no. 2, pp. 454–461, 2014.
[19]
K. Zhu, H. Fu, J. Zhang, X. Lv, J. Tang, and X. Xu, “Studies on removal of NH4+-N from aqueous solution by using the activated carbons derived from rice husk,” Biomass and Bioenergy, vol. 43, pp. 18–25, 2012.
[20]
M. Ghaedi, H. Hossainian, M. Montazerozohori et al., “A novel acorn based adsorbent for the removal of brilliant green,” Desalination, vol. 281, no. 1, pp. 226–233, 2011.
[21]
L. Wang, “Application of activated carbon derived from “waste” bamboo culms for the adsorption of azo disperse dye: kinetic, equilibrium and thermodynamic studies,” Journal of Environmental Management, vol. 102, pp. 79–87, 2012.
[22]
J. G. Flores-Garnica, L. Morales-Barrera, G. Pineda-Camacho, and E. Cristiani-Urbina, “Biosorption of Ni(II) from aqueous solutions by Litchi chinensis seeds,” Bioresource Technology, vol. 136, pp. 635–643, 2013.
[23]
V. K. Gupta, A. Rastogi, and A. Nayak, “Biosorption of nickel onto treated alga (Oedogonium hatei): application of isotherm and kinetic models,” Journal of Colloid and Interface Science, vol. 342, no. 2, pp. 533–539, 2010.
[24]
D. H. K. Reddy, D. K. V. Ramana, K. Seshaiah, and A. V. R. Reddy, “Biosorption of Ni(II) from aqueous phase by Moringa oleifera bark, a low cost biosorbent,” Desalination, vol. 268, no. 1–3, pp. 150–157, 2011.
[25]
M. I. Din and M. L. Mirza, “Biosorption potentials of a novel green biosorbent Saccharum bengalense containing cellulose as carbohydrate polymer for removal of Ni(II) ions from aqueous solutions,” International Journal of Biological Macromolecules, vol. 54, pp. 99–108, 2013.
[26]
D. H. K. Reddy, K. Seshaiah, A. V. R. Reddy, and S. M. Lee, “Optimization of Cd(II), Cu(II) and Ni(II) biosorption by chemically modified Moringa oleifera leaves powder,” Carbohydrate Polymers, vol. 88, no. 3, pp. 1077–1086, 2012.
[27]
M. Ghaedi, M. N. Biyareh, S. N. Kokhdan et al., “Comparison of the efficiency of palladium and silver nanoparticles loaded on activated carbon and zinc oxide nanorods loaded on activated carbon as new adsorbents for removal of Congo red from aqueous solution: kinetic and isotherm study,” Materials Science and Engineering C, vol. 32, no. 4, pp. 725–734, 2012.
[28]
Q. Li, L. Chai, and W. Qin, “Cadmium(II) adsorption on esterified spent grain: equilibrium modeling and possible mechanisms,” Chemical Engineering Journal, vol. 197, pp. 173–180, 2012.
[29]
L. Huang, Y. Sun, T. Yang, and L. Li, “Adsorption behavior of Ni(II) on lotus stalks derived active carbon by phosphoric acid activation,” Desalination, vol. 268, no. 1–3, pp. 12–19, 2011.