全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Influence of Rare Earth Doping on Microstructure and Luminescence Behaviour of Sodium Sulphate

DOI: 10.1155/2014/675417

Full-Text   Cite this paper   Add to My Lib

Abstract:

Na2SO4, Na2SO4: Li, and Na2SO4: Li, Eu, Dy phosphors were prepared by using slow evaporation technique followed by subsequent calcination at 400°C for 4?h. Doping with Li+ ion stabilized the thenardite phase of host matrix, while codoping with RE3+ stabilized the phase transformation from stable thenardite to metastable mirabilite crystal structure. The microstructure and morphology were studied by using scanning electron microscopy and transmission electron microscopy. The thermoluminescence studies revealed that isovalent doping of Li+ served as a quencher and addition of codopant introduces the additional trap sites in the host matrix. The room temperature emission spectra of Li-doped, RE3+-codoped, and undoped Na2SO4 were studied under ultraviolet radiation. For pure Na2SO4 the two peaks which appeared are at 364 and 702?nm, respectively. The emission intensities of RE3+-codoped samples increase with increase in dopant concentration. 1. Introduction Alkali sulphates have been known for a long time as versatile and excellent phosphor materials. These sulphates have attracted the attention of many workers in view of their potential applications in radiation dosimetry, TV screens, cathode ray tubes, and so forth. A variety of defect centres are likely to be formed in sulphate based phosphors [1–6]. Sulphate based radiation dosimeter materials doped with rare earth (RE) ions have been extensively investigated due to their high luminescence sensitivity [7]. Significant advancements have been made in thermoluminescence (TL) and photoluminescence (PL) experiments during the last couple of decades [8–10]. Up to date, sodium sulphate is extensively investigated from the prospect of phosphor material attributed to its simple chemical composition and defect rich crystal. Na2SO4 exhibits a variety of phase transitions between its five anhydrous polymorphs (labelled I–V). The phase transformation sequence among the Na2SO4 polymorphs can be described as Na2SO4 forms two naturally occurring minerals: mirabilite (Na2SO4·10H2O) and thenardite (Na2SO4). Both are in thermodynamic equilibrium at 32°C which may be lowered to 18°C in the presence of foreign ions [11]. At room temperature, phase V (thenardite) is reported to be stable while phase III is metastable. Phases I and II are high-temperature polymorphs; however, phase II is reported to have a narrow stability zone. Phase IV is considered to be metastable and its phase relation and structure have yet to be well established [12–15]. Correcher et al. [16] observed the spectra of infrared-stimulated luminescence

References

[1]  R. S. Kher, A. K. Upadhyay, S. J. Dhoble, and M. S. K. Khokhar, “Luminescence studies of MgSO4Dy phosphors,” Indian Journal of Pure and Applied Physics, vol. 46, no. 9, pp. 607–610, 2008.
[2]  A. K. Panigrahi, S. J. Dhoble, R. S. Kher, and S. V. Moharil, “Thermo and mechanoluminescence of Dy3+ activated K2Mg2(SO4)3 phosphor,” Physica Status Solidi A, vol. 198, no. 2, pp. 322–328, 2003.
[3]  C.-X. Zhang, P. L. Leung, Q. Tang, D.-L. Luo, and M. J. Stokes, “Spectral comparison of MgSO4 doped with Dy, Mn, P, and Cu,” Journal of Physics D, vol. 34, no. 10, pp. 1533–1539, 2001.
[4]  T. K. Gundu Rao, B. C. Bhatt, J. K. Srivastava, and K. S. V. Nambi, “On the sulphoxy radicals in CaSO4:Dy,Na thermoluminescent phosphor: electron paramagnetic resonance studies,” Journal of Physics: Condensed Matter, vol. 5, no. 12, pp. 1791–1800, 1993.
[5]  S. J. Dhoble, S. V. Moharil, and T. K. G. Rao, “Correlated ESR, PL and TL studies on K3Na(SO4)2: Eu thermoluminescence dosimetry phosphor,” Journal of Luminescence, vol. 93, no. 1, pp. 43–49, 2001.
[6]  S. C. Gedam, “Thermoluminescence (TL) study of CeSO4Cl: Dy phosphor for γ-radiation dosimetry,” Research Journal of Engineering Sciences, vol. 2, pp. 28–31, 2013.
[7]  M. Magarabi, A. A. Finch, and P. D. Townsend, “Structural and impurity phase transitions of LiNaSO4: RE probed using cathodo-thermoluminescence,” Journal of Physics: Condensed Matter, vol. 43, pp. 776–780, 2008.
[8]  A. Vij, S. P. Lochab, S. Singh, R. kumar, and N. Singh, “Thermoluminescence study of UV irradiated Ce doped SrS nanostructures,” Journal of Alloys and Compounds, vol. 486, no. 1-2, pp. 554–558, 2009.
[9]  J. P. Elder, “Thermal energy storage materials?a DSC study,” Thermochimica Acta, vol. 36, no. 1, pp. 67–77, 1980.
[10]  H. G. Wiedemann, “Thermal studies on thenardite,” Thermochimica Acta, vol. 50, pp. 17–29, 1981.
[11]  O. Braitsh and K. S. D. Entstehung, Salzlagerstallen, Springer, New York, NY, USA, 1962.
[12]  S. Gomathy, P. Gopalan, and A. R. Kulkarni, “Effect of homovalent anion doping on the conductivity and phase transitions in Na2SO4,” Journal of Solid State Chemistry, vol. 146, no. 1, pp. 6–12, 1999.
[13]  F. C. Kracek and R. E. Gibson, “The polymorphism of sodium sulfate: III. Dilatometer investigations,” Journal of Physical Chemistry, vol. 34, no. 1, pp. 188–206, 1930.
[14]  B. K. Choi, H. K. Lee, and Y. W. Kim, “Ionic conduction and structural phase transitions of Na2SO4 doped with various impurities,” Solid State Ionics, vol. 113, pp. 493–499, 1998.
[15]  C. Rodriguez-Navarro, E. Doehne, and E. Sebastian, “How does sodium sulfate crystallize? Implications for the decay and testing of building materials,” Cement and Concrete Research, vol. 30, no. 10, pp. 1527–1534, 2000.
[16]  V. Correcher, J. Garcia-Guinea, P. Lopez-Arce, and J. M. Gomez-Ros, “Luminescence emission spectra in the temperature range of the structural phase transitions of Na2SO4,” Spectrochimica Acta A, vol. 60, no. 7, pp. 1431–1438, 2004.
[17]  A. Sidike, K. Niyazi, H.-J. Zhu, K. Atobe, and N. Yamashita, “Photoluminescence properties of thenardite from Ai-Ding Salt Lake, Xinjiang, China,” Physics and Chemistry of Minerals, vol. 36, no. 3, pp. 119–126, 2009.
[18]  H.-C. Freiheit, “Order parameter behaviour and thermal hysteresis at the phase transition in the superionic conductor lithium sodium sulfate LiNaSO4,” Solid State Communications, vol. 119, no. 8-9, pp. 539–544, 2001.
[19]  A. Choubey, S. K. Sharma, S. P. Lochab, and D. Kanjilal, “Effect of ion irradiation on the thermoluminescence properties of K2Ca2(SO4)3 phosphor,” Radiation Effects and Defects in Solids, vol. 166, no. 7, pp. 487–500, 2011.
[20]  R. Chen and Y. Kirish, Analysis of Thermally Stimulated Processes, Pergamon, New York, NY, USA, 1981.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133