Radioembolisation is a way of providing targeted radiotherapy to colorectal liver metastases. Results are encouraging but there is still no standard method of assessing the response to treatment. This paper aims to review the current experience assessing response following radioembolisation. A literature review was undertaken detailing radioembolisation in the treatment of colorectal liver metastases comparing staging methods, criteria, and response. A search was performed of electronic databases from 1980 to November 2011. Information acquired included year published, patient numbers, resection status, chemotherapy regimen, criteria used to stage disease and assess response to radioembolisation, tumour markers, and overall/progression free survival. Nineteen studies were analysed including randomised controlled trials, clinical trials, meta-analyses, and case series. There is no validated modality as the method of choice when assessing response to radioembolisation. CT at 3 months following radioembolisation is the most frequently modality used to assess response to treatment. PET-CT is increasingly being used as it measures functional and radiological aspects. RECIST is the most frequently used criteria. Conclusion. A validated modality to assess response to radioembolisation is needed. We suggest PET-CT and CEA pre- and postradioembolisation at 3 months using RECIST 1.1 criteria released in 2009, which includes criteria for PET-CT, cystic changes, and necrosis. 1. Introduction Selective interarterial radiation therapy (radioembolisation) is a relatively new approach to treating colorectal liver metastases in the UK. It was initially used in Australasia in 1990 [1] and has been licensed for use in Europe since 2002 [2]. Radioembolisation is used not only when conventional treatment has failed but also as first line treatment [3, 4] and it uses microspheres 20–60 microns in diameter [2]. These can be either glass or resin and are embedded with the beta emitting isotope yttrium 90. This has a half-life of 64.1 hours and decays to the stable Zirconium 90 [5]. The spheres are deployed using interventional radiology techniques via a catheter into the hepatic artery. The spheres then become lodged in the microvasculature within the tumour. Due to the small nature of the spheres, they provide interstitial high dose radiotherapy and arterial microembolisation becoming lodged in the arterioles supplying the tumour [6]. In simple transarterial embolization, the antitumour effect is via terminal artery blockade using an embolising agent such as gel foam or
References
[1]
B. N. Gray, J. E. Anderson, M. A. Burton et al., “Regression of liver metastases following treatment with yttrium-90 microspheres,” Australian and New Zealand Journal of Surgery, vol. 62, no. 2, pp. 105–110, 1992.
[2]
SIRTEX, “What are SIR-spheres microspheres?” 2011, http://www.sirtex.com/content.cfm?sec=world&MenuID=A040E9B4.
[3]
L. Lim, P. Gibbs, D. Yip et al., “Prospective study of treatment with selective internal radiation therapy spheres in patients with unresectable primary or secondary hepatic malignancies,” Internal Medicine Journal, vol. 35, no. 4, pp. 222–227, 2005.
[4]
M. A. D. Vente, M. Wondergem, I. van der Tweel et al., “Yttrium-90 microsphere radioembolization for the treatment of liver malignancies: a structured meta-analysis,” European Radiology, vol. 19, no. 4, pp. 951–959, 2009.
[5]
R. A. Sharma, G. A. Van Hazel, B. Morgan et al., “Radioembolization of liver metastases from colorectal cancer using Yttrium-90 microspheres with concomitant systemic oxaliplatin, fluorouracil, and leucovorin chemotherapy,” Journal of Clinical Oncology, vol. 25, no. 9, pp. 1099–1106, 2007.
[6]
R. T. Hoffmann, T. F. Jakobs, C. H. Kubisch et al., “Radiofrequency ablation after selective internal radiation therapy with Yttrium90 microspheres in metastatic liver disease-Is it feasible?” European Journal of Radiology, vol. 74, no. 1, pp. 199–205, 2010.
[7]
R. J. Lewandowski, J.-F. Geschwind, E. Liapi, and R. Salem, “Transcatheter intraarterial therapies: rationale and overview,” Radiology, vol. 259, no. 3, pp. 641–657, 2011.
[8]
H. R. Bierman, R. L. Byron Jr., K. H. Kelley, and A. Grady, “Studies on the blood supply of tumors in man. III. Vascular patterns of the liver by hepatic arteriography in vivo,” Journal of the National Cancer Institute, vol. 12, no. 1, pp. 107–131, 1951.
[9]
K. T. Sato, R. A. Omary, C. Takehana et al., “The role of tumor vascularity in predicting survival after Yttrium-90 radioembolization for liver metastases,” Journal of Vascular and Interventional Radiology, vol. 20, no. 12, pp. 1564–1569, 2009.
[10]
R. Stangl, A. Altendorf-Hofmann, R. M. Charnley, and J. Scheele, “Factors influencing the natural history of colorectal liver metastases,” The Lancet, vol. 343, no. 8910, pp. 1405–1410, 1994.
[11]
J. M. McLoughlin, E. H. Jensen, and M. Malafa, “Resection of colorectal liver metastases: current perspectives,” Cancer Control, vol. 13, no. 1, pp. 32–41, 2006.
[12]
G. Van Hazel, A. Blackwell, J. Anderson et al., “Randomised phase 2 trial of SIR-spheres plus fluorouracil/leucovorin chemotherapy versus fluorouracil/leucovorin chemotherapy alone in advanced colorectal cancer,” Journal of Surgical Oncology, vol. 88, no. 2, pp. 78–85, 2004.
[13]
S. Garrean, A. Muhs, J. T. Bui et al., “Complete eradication of hepatic metastasis from colorectal cancer by Yttrium-90 SIRT,” World Journal of Gastroenterology, vol. 13, no. 21, pp. 3016–3019, 2007.
[14]
S. Pini, C. Pinto, B. Angelelli et al., “Multimodal sequential approach in colorectal cancer liver metastases: hepatic resection after yttrium-90 selective internal radiation therapy and cetuximab rescue treatment,” Tumori, vol. 96, no. 1, pp. 157–159, 2010.
[15]
M. Cosimelli, R. Golfieri, P. P. Cagol et al., “Multi-centre phase II clinical trial of yttrium-90 resin microspheres alone in unresectable, chemotherapy refractory colorectal liver metastases,” British Journal of Cancer, vol. 103, no. 3, pp. 324–331, 2010.
[16]
C.-Y. Wong, R. Salem, S. Raman, V. L. Gates, and H. J. Dworkin, “Evaluating 90 Y-glass microsphere treatment response of unresectable colorectal liver metastases by [18F]FDG pet: a comparison with CT or MRI,” European Journal of Nuclear Medicine, vol. 29, no. 6, pp. 815–820, 2002.
[17]
Excellence, “TNIfHaC. Selective internal radiation therapy for non-resectable colorectal metastases in the liver: overview,” The National Institute for Health and Clinical Excellence, 2011, http://www.nice.org.uk.
[18]
A. Kennedy, S. Nag, R. Salem et al., “Recommendations for radioembolization of hepatic malignancies using Yttrium-90 microsphere brachytherapy: a consensus panel report from the radioembolization brachytherapy oncology consortium,” International Journal of Radiation Oncology Biology Physics, vol. 68, no. 1, pp. 13–23, 2007.
[19]
P. Therasse, S. G. Arbuck, E. A. Eisenhauer et al., “New guidelines to evaluate the response to treatment in solid tumors,” Journal of the National Cancer Institute, vol. 92, no. 3, pp. 205–216, 2000.
[20]
L. Bester, P. G. Hobbins, S.-C. Wang, and R. Salem, “Imaging characteristics following 90yttrium microsphere treatment for unresectable liver cancer,” Journal of Medical Imaging and Radiation Oncology, vol. 55, no. 2, pp. 111–118, 2011.
[21]
J. H. Anderson, J. A. Goldberg, R. G. Bessent et al., “Glass yttrium-90 microspheres for patients with colorectal liver metastases,” Radiotherapy and Oncology, vol. 25, no. 2, pp. 137–139, 1992.
[22]
R. S. Stubbs, I. O'Brien, and M. M. Correia, “Selective internal radiation therapy with 90Y microspheres for colorectal liver metastases: single-centre experience with 100 patients,” ANZ Journal of Surgery, vol. 76, no. 8, pp. 696–703, 2006.
[23]
S. Boppudi, S. K. Wickremesekera, M. Nowitz, and R. Stubbs, “Evaluation of the role of CT in the assessment of response to selective internal radiation therapy in patients with colorectal liver metastases,” Australasian Radiology, vol. 50, no. 6, pp. 570–577, 2006.
[24]
A. S. Kennedy, D. Coldwell, C. Nutting et al., “Resin 90Y-microsphere brachytherapy for unresectable colorectal liver metastases: modern USA experience,” International Journal of Radiation Oncology Biology Physics, vol. 65, no. 2, pp. 412–425, 2006.
[25]
R. S. Stubbs, R. J. Cannan, and A. W. Mitchell, “Selective internal radiation therapy with 90 Yttrium microspheres for extensive colorectal liver metastases,” Journal of Gastrointestinal Surgery, vol. 5, no. 3, pp. 294–302, 2001.
[26]
L. R. Jiao, T. Szyszko, A. Al-Nahhas et al., “Clinical and imaging experience with yttrium-90 microspheres in the management of unresectable liver tumours,” European Journal of Surgical Oncology, vol. 33, no. 5, pp. 597–602, 2007.
[27]
A. Omed, J. A. L. Lawrance, G. Murphy et al., “A retrospective analysis of selective internal radiation therapy (SIRT) with yttrium-90 microspheres in patients with unresectable hepatic malignancies,” Clinical Radiology, vol. 65, no. 9, pp. 720–728, 2010.
[28]
K. T. Sato, R. J. Lewandowski, M. F. Mulcahy et al., “Unresectable chemorefractory liver metastases: radioembolization with 90Y microspheres: safety, efficacy, and survival,” Radiology, vol. 247, no. 2, pp. 507–515, 2008.
[29]
R. Murthy, H. Xiong, R. Nunez et al., “Yttrium 90 resin microspheres for the treatment of unresectable colorectal hepatic metastases after failure of multiple chemotherapy regimens: preliminary results,” Journal of Vascular and Interventional Radiology, vol. 16, no. 7, pp. 937–945, 2005.
[30]
B. Gray, G. Van Hazel, M. Hope et al., “Randomised trial of SIR-Spheres plus chemotherapy versus chemotherapy alone for treating patients with liver metastases from primary large bowel cancer,” Annals of Oncology, vol. 12, no. 12, pp. 1711–1720, 2001.
[31]
G. W. Nace, J. L. Steel, N. Amesur, A. Zajko, B. E. Nastasi, J. Joyce, et al., “Yttrium-90 radioembolization for colorectal cancer liver metastases: a single institution experience,” International Journal of Surgical Oncology, vol. 2011, Article ID 571261, 9 pages, 2011.
[32]
S. Kosmider, T. H. Tan, D. Yip, R. Dowling, M. Lichtenstein, and P. Gibbs, “Radioembolization in combination with systemic chemotherapy as first-line therapy for liver metastases from colorectal cancer,” Journal of Vascular and Interventional Radiology, vol. 22, no. 6, pp. 780–786, 2011.
[33]
T. C. Chua, L. Bester, A. Saxena, and D. L. Morris, “Radioembolization and systemic chemotherapy improves response and survival for unresectable colorectal liver metastases,” Journal of Cancer Research and Clinical Oncology, vol. 137, no. 5, pp. 865–873, 2011.
[34]
J. C. Andrews, S. C. Walker, R. J. Ackermann et al., “Hepatic radioembolization with yttrium-90 containing glass microspheres: preliminary results and clinical follow-up,” Journal of Nuclear Medicine, vol. 35, no. 10, pp. 1637–1644, 1994.
[35]
R. J. Lewandowski, K. G. Thurston, J. E. Goin et al., “90Y microsphere (TheraSphere) treatment for unresectable colorectal cancer metastases of the liver: response to treatment at targeted doses of 135-150 Gy as measured by [18F]fluorodeoxyglucose positron emission tomography and computed tomographic imaging,” Journal of Vascular and Interventional Radiology, vol. 16, no. 12, pp. 1641–1651, 2005.
[36]
R. Mancini, L. Carpanese, R. Sciuto et al., “A multicentric phase II clinical trial on intra-arterial hepatic radiotherapy with 90Yttrium SIR-spheres in unresectable, colorectal liver metastases refractory to i.v. chemotherapy: preliminary results on toxicity and response rates,” In Vivo, vol. 20, no. 6, pp. 711–714, 2006.
[37]
T. F. Jakobs, R.-T. Hoffmann, G. Poepperl et al., “Mid-term results in otherwise treatment refractory primary or secondary liver confined tumours treated with selective internal radiation therapy (SIRT) using 90Y ttrium resin-microspheres,” European Radiology, vol. 17, no. 5, pp. 1320–1330, 2007.
[38]
G. A. van Hazel, N. Pavlakis, D. Goldstein et al., “Treatment of fluorouracil-refractory patients with liver metastases from colorectal cancer by using yttrium-90 resin microspheres plus concomitant systemic irinotecan chemotherapy,” Journal of Clinical Oncology, vol. 27, no. 25, pp. 4089–4095, 2009.
[39]
F. H. Miller, A. L. Keppke, D. Reddy et al., “Response of liver metastases after treatment with yttrium-90 microspheres: role of size, necrosis, and PET,” The American Journal of Roentgenology, vol. 188, no. 3, pp. 776–783, 2007.
[40]
RECIST, “RECIST version 1. 1 update RECIST in practice,” 2009, http://www.recist.com/recist-in-practice/22.html.
[41]
C.-Y. O. Wong, R. Salem, F. Qing et al., “Metabolic response after intraarterial 90Y-glass microsphere treatment for colorectal liver metastases: comparison of quantitative and visual analyses by 18F-FDG PET,” Journal of Nuclear Medicine, vol. 45, no. 11, pp. 1892–1897, 2004.
[42]
T. Denecke, R. Rühl, B. Hildebrandt et al., “Planning transarterial radioembolization of colorectal liver metastases with Yttrium 90 microspheres: evaluation of a sequential diagnostic approach using radiologic and nuclear medicine imaging techniques,” European Radiology, vol. 18, no. 5, pp. 892–902, 2008.
[43]
P. E. Kinahan and J. W. Fletcher, “Positron emission tomography-computed tomography standardized uptake values in clinical practice and assessing response to therapy,” Seminars in Ultrasound, CT and MRI, vol. 31, no. 6, pp. 496–505, 2010.
[44]
S. A. Gulec, R. R. Suthar, T. C. Barot, and K. Pennington, “The prognostic value of functional tumor volume and total lesion glycolysis in patients with colorectal cancer liver metastases undergoing 90Y selective internal radiation therapy plus chemotherapy,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 38, no. 7, pp. 1289–1295, 2011.
[45]
S. M. Tochetto, P. Rezai, M. Rezvani et al., “Does multidetector CT attenuation change in colon cancer liver metastases treated with90Y help predict metabolic activity at FDG PET?” Radiology, vol. 255, no. 1, pp. 164–172, 2010.