Introduction. The difficulty and challenge of recovering a right lobe graft without MHV drainage is reconstructing the outflow tract of the hepatic veins. With the inclusion or the reconstruction of the MHV, early graft function is satisfactory. The inclusion of the MHV or not in the donor’s right lobectomy should be based on sound criteria to provide adequate functional liver mass for recipient, while keeping risk to donor to the minimum. Objective. Reviewing the results of a policy for right lobe grafts transplant without MHV and analyzing methods of venous reconstruction related to outcome. Materials and Methods. We have two groups Group A (with more than one HV anast.) ( ) and Group B (single HV anast.) ( ). Both groups were compared regarding indications for reconstruction, complications, and operative details and outcomes, besides describing different modalities used for venous reconstruction. Results. Significant increase in operative details time in Group A. When comparison came to complications and outcomes in terms of laboratory findings and overall hospital stay, there were no significant differences. Three-month and one-year survival were better in Group A. Conclusion. Adult LDLT is safely achieved with better outcome to recipients and donors by recovering the right lobe without MHV, provided that significant MHV tributaries (segments V, VIII more than 5?mm) are reconstructed, and any accessory considerable inferior right hepatic veins (IRHVs) or superficial RHVs are anastomosed. 1. Introduction Chronic liver disease and cirrhosis are important causes of morbidity and mortality in the world. Moreover, the burden of chronic liver disease is projected to increase due in part to the increasing prevalence of end-stage liver disease and HCC secondary to NAFLD and HCV. Liver transplantation is the best treatment option for end-stage liver disease, including early HCC associated with advanced cirrhosis. However, the application of liver transplantation is severely limited by the shortage of deceased donor grafts; hence many patients die from progression of the disease while waiting for a graft [1]. The shortage of cadaveric livers has sparked an interest in living donor liver transplantation (LDLT). LDLT may increase the liver graft pool and reduce waiting list mortality [2, 3]. In adults, right hemiliver graft can satisfy the demands of the recipient’s metabolism and prevent small-for-size syndrome. The difficulty and challenge of LDLT without MHV drainage is providing adequate venous drainage of the graft [4, 5]. Obstruction of venous outflow
References
[1]
Y.-S. Lim and W. R. Kim, “The global impact of hepatic fibrosis and end-stage liver disease,” Clinics in Liver Disease, vol. 12, no. 4, pp. 733–746, 2008.
[2]
X.-H. Wang, L.-N. Yan, F. Zhang et al., “Early experiences on living donor liver transplantation in China: multicenter report,” Chinese Medical Journal, vol. 119, no. 12, pp. 1003–1009, 2006.
[3]
L.-N. Yan, B. Li, Y. Zeng et al., “Modified techniques for adult-to-adult living donor liver transplantation,” Hepatobiliary and Pancreatic Diseases International, vol. 5, no. 2, pp. 173–179, 2006.
[4]
H. Oya, Y. Sato, S. Yamamoto et al., “Surgical procedures for decompression of excessive shear stress in small-for-size living donor liver transplantation: new hepatic vein reconstruction,” Transplantation Proceedings, vol. 37, no. 2, pp. 1108–1111, 2005.
[5]
S.-G. Lee, “Asian contribution to living donor liver transplantation,” Journal of Gastroenterology and Hepatology, vol. 21, no. 3, pp. 572–574, 2006.
[6]
H. Wu, J.-Y. Yang, L.-N. Yan et al., “Hepatic venous outflow reconstruction in adult right lobe living donor liver transplantation without middle hepatic vein,” Chinese Medical Journal, vol. 120, no. 11, pp. 947–951, 2007.
[7]
T. Kaneko, K. Kaneko, H. Sugimoto et al., “Intrahepatic anastomosis formation between the hepatic veins in the graft liver of the living related liver transplantation: Observation by Doppler ultrasonography,” Transplantation, vol. 70, no. 6, pp. 982–985, 2000.
[8]
S.-G. Lee, “Techniques of reconstruction of hepatic veins in living-donor liver transplantation, especially for right hepatic vein and major short hepatic veins of right-lobe graft,” Journal of Hepato-Biliary-Pancreatic Surgery, vol. 13, no. 2, pp. 131–138, 2006.
[9]
V. H. de Villa, C.-L. Chen, Y.-S. Chen et al., “Right lobe living donor liver transplantation: addressing the middle hepatic vein controversy,” Annals of Surgery, vol. 238, no. 2, pp. 275–282, 2003.
[10]
K. Tanaka and T. Yamada, “Living donor liver transplantation in Japan and Kyoto University: what can we learn?” Journal of Hepatology, vol. 42, no. 1, pp. 25–28, 2005.
[11]
A. Marcos, R. A. Fisher, J. M. Ham et al., “Right lobe living donor liver transplantation,” Transplantation, vol. 68, no. 6, pp. 798–803, 1999.
[12]
P.-F. Yu, J. Wu, and S.-S. Zheng, “Management of the middle hepatic vein and its tributaries in right lobe living donor liver transplantation,” Hepatobiliary and Pancreatic Diseases International, vol. 6, no. 4, pp. 358–363, 2007.
[13]
C.-M. Lo, S.-T. Fan, C.-L. Liu et al., “Extending the limit on the size of adult recipient in living donor liver transplantation using extended right lobe graft,” Transplantation, vol. 63, no. 10, pp. 1524–1528, 1997.
[14]
N. L. Ascher, J. R. Lake, J. C. Emond, and J. P. Roberts, “Liver transplantation for fulminant hepatic failure,” Archives of Surgery, vol. 128, no. 6, pp. 677–682, 1993.
[15]
M. E. Wachs, T. E. Bak, F. M. Karrer et al., “Adult living donor liver transplantation using a right hepatic lobe,” Transplantation, vol. 66, no. 10, pp. 1313–1316, 1998.
[16]
S.-T. Fan, V. H. De Villa, T. Kiuchi, S.-G. Lee, and M. Makuuchi, “Right anterior sector drainage in right-lobe live-donor liver transplantation,” Transplantation, vol. 75, no. 3, supplement, pp. S25–S27, 2003.
[17]
S.-T. Fan, C.-M. Lo, C.-L. Liu, W.-X. Wang, and J. Wong, “Safety and necessity of including the middle hepatic vein in the right lobe graft in adult-to-adult live donor liver transplantation,” Annals of Surgery, vol. 238, no. 1, pp. 137–148, 2003.
[18]
H. Yamamoto, Y. Maetani, T. Kiuchi et al., “Background and clinical impact of tissue congestion in right-lobe living-donor liver grafts: a magnetic resonance imaging study,” Transplantation, vol. 76, no. 1, pp. 164–169, 2003.
[19]
M. Adham, J. Dumortier, A. Abdelaal, P. Sagnard, C. Boucaud, and O. Boillot, “Does middle hepatic vein omission in a right split graft affect the outcome of liver transplantation? A comparative study of right split livers with and without the middle hepatic vein,” Liver Transplantation, vol. 13, no. 6, pp. 829–837, 2007.
[20]
Y. F. Cheng, C. L. Chen, T. L. Huang et al., “Single imaging modality evaluation of living donors in liver transplantation: magnetic resonance imaging,” Transplantation, vol. 72, no. 9, pp. 1527–1533, 2001.
[21]
H. Tashiro, T. Itamoto, H. Ohdan et al., “Reconstruction of the middle hepatic vein tributaries draining segments V and VIII of a right liver graft by using the recipient's own middle hepatic vein and vascular closure staples,” Surgery Today, vol. 38, no. 3, pp. 289–291, 2008.
[22]
A. Marcos, M. Orloff, L. Mieles, A. T. Olzinski, J. F. Renz, and J. V. Sitzmann, “Functional venous anatomy for right-lobe grafting and techniques to optimized outflow,” Liver Transplantation, vol. 7, no. 10, pp. 845–852, 2001.
[23]
Y. Sugawara, M. Makuuchi, H. Imamura, J. Kaneko, T. Ohkubo, and N. Kokudo, “Outflow reconstruction in recipients of right liver graft from living donors,” Liver Transplantation, vol. 8, no. 2, pp. 167–168, 2002.
[24]
Y. Sugawara, M. Makuuchi, H. Imamura, J. Kaneko, and N. Kokudo, “Outflow reconstruction in extended right liver grafts from living donors,” Liver Transplantation, vol. 9, no. 3, pp. 306–309, 2003.
[25]
S. Hwang, S.-G. Lee, K.-M. Park et al., “Quilt venoplasty using recipient saphenous vein graft for reconstruction of multiple short hepatic veins in right liver grafts,” Liver Transplantation, vol. 11, no. 1, pp. 104–107, 2005.
[26]
S. G. Lee, K. M. Park, S. Hwang et al., “Modified right liver graft from a living donor to prevent congestion,” Transplantation, vol. 74, no. 1, pp. 54–59, 2002.
[27]
M. S. Cattral, P. D. Greig, D. Muradali, and D. Grant, “Reconstruction of middle hepatic vein of a living-donor right lobe liver graft with recipient left portal vein,” Transplantation, vol. 71, no. 12, pp. 1864–1866, 2001.
[28]
T. Hashimoto, Y. Sugawara, Y. Kishi et al., “Superior vena cava graft for right liver and right lateral sector transplantation,” Transplantation, vol. 79, no. 8, pp. 920–925, 2005.
[29]
Y. Sugawara, M. Makuuchi, N. Akamatsu et al., “Refinement of venous reconstruction using cryopreserved veins in right liver grafts,” Liver Transplantation, vol. 10, no. 4, pp. 541–547, 2004.
[30]
C. E. Broelsch, M. Malago, G. Testa, and C. Valentin-Gamazo, “Living donor liver transplantation in adults: outcome in Europe,” Liver Transplantation, vol. 6, supplement 2, no. 6, pp. S64–S65, 2000.
[31]
O. Boillot, J. Belghiti, D. Azoulay, J. Gugenheim, O. Soubrane, and D. Cherqui, “Initial French experience in adult-to-adult living donor liver transplantation,” Transplantation Proceedings, vol. 35, no. 3, pp. 962–963, 2003.
[32]
M. Malago, G. Testa, A. Frilling, et al., “Right living donor liver transplantation: an option for adult patients: single institution experience with 74 patients,” Annals of Surgery, vol. 238, no. 6, pp. 853–862, 2003.
[33]
A. Marcos, “Right lobe living donor liver transplantation: a review,” Liver Transplantation, vol. 6, pp. 3–20, 2000.
[34]
T. Bak, M. Wachs, J. Trotter, et al., “Adult-to-adult living donor liver transplantation using right-lobe grafts: results and lessons learned from a single-center experience,” Liver Transplantation, vol. 7, pp. 680–686, 2001.