全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Interferon-α-Induced Changes to Natural Killer Cells Are Associated with the Treatment Outcomes in Patients with HCV Infections

DOI: 10.1155/2013/374196

Full-Text   Cite this paper   Add to My Lib

Abstract:

Aim. We analyzed the pretreatment natural killer (NK) cell functions with the aim of predicting the sustained virological response (SVR) or the interleukin (IL) 28B polymorphism that is strongly associated with the treatment response. Methods. The peripheral NK cells from chronic hepatitis patients with HCV genotype 1 and high virus titers were activated using a Toll-like receptor (TLR) 4 ligand and IFN-α. The cell surface markers were evaluated using a flow cytometric analysis, and IFN-γ production was evaluated using an enzyme-linked immunosorbent assay (ELISA). The genotyping of the polymorphisms in the IL28B gene region (rs8099917) on chromosome 19 was performed on the DNA collected from each patient. Results. The production of IFN-γ was significantly higher in the SVR patients compared with the no-response (NR) patients, whereas the cell surface markers were similar between the SVR and the NR patients. There were no significant differences found in the IL28B genotype distribution associated with the production of IFN-γ. Conclusion. Differences in the NK cell functions were observed between the SVR patients and the NR patients, suggesting that NK cells play a potential role in the treatment response independent of the IL28B genotype. 1. Introduction The hepatitis C virus (HCV) is the major cause of chronic liver disease, with an estimated global prevalence of 2.5%, that is, 170 million people infected worldwide [1], and is a leading cause of cirrhosis, hepatocellular carcinoma, and liver transplantation [2]. Antiviral treatment, which is based on the combination of pegylated interferon- (IFN-) α and the nucleoside analog ribavirin (RBV), is associated with a sustained virologic response (SVR), that is, serum HCV RNA negatively for 6 months after the cessation of the antiviral therapy. The HCV genotype, viral load, age, and fibrosis stage are well known as pretreatment variables [3–6]; moreover, single nucleotide polymorphisms (SNPs) located in the region of the interleukin (IL) 28B gene have been strongly associated with an SVR [7, 8]. Although the IL28B genotype can be useful when making treatment decisions, this variable alone is not a perfect predictor of the treatment outcome. The natural killer (NK) cells involved in innate immunity play central roles of defense against viral infections through a direct cytotoxic effect in the destruction of the virus-infected target cells and the production of inflammatory cytokines [9]. Furthermore, in contrast to T cells, NK cells do not require priming for the recognition of the target cells. There has been

References

[1]  C. W. Shepard, L. Finelli, and M. J. Alter, “Global epidemiology of hepatitis C virus infection,” Lancet Infectious Diseases, vol. 5, no. 9, pp. 558–567, 2005.
[2]  G. L. Davis, J. E. Albright, S. F. Cook, and D. M. Rosenberg, “Projecting future complications of chronic hepatitis C in the United States,” Liver Transplantation, vol. 9, no. 4, pp. 331–338, 2003.
[3]  E. Ogawa, N. Furusyo, K. Toyoda, H. Takeoka, S. Maeda, and J. Hayashi, “The longitudinal quantitative assessment by transient elastography of chronic hepatitis C patients treated with pegylated interferon alpha-2b and ribavirin,” Antiviral Research, vol. 83, no. 2, pp. 127–134, 2009.
[4]  M. Kainuma, N. Furusyo, E. Kajiwara et al., “Pegylated interferon α-2b plus ribavirin for older patients with chronic hepatitis C,” World Journal of Gastroenterology, vol. 16, no. 35, pp. 4400–4409, 2010.
[5]  M. Kainuma, N. Furusyo, K. Azuma et al., “Pegylated interferon α-2b plus ribavirin for Japanese chronic hepatitis C patients with normal alanine aminotransferase,” Hepatology Research, vol. 42, no. 1, pp. 33–41, 2012.
[6]  N. Furusyo, M. Katoh, Y. Tanabe et al., “Interferon alpha plus ribavirin combination treatment of Japanese chronic hepatitis C patients with HCV genotype 2: a project of the Kyushu University Liver Disease Study Group,” World Journal of Gastroenterology, vol. 12, no. 5, pp. 784–790, 2006.
[7]  Y. Tanaka, N. Nishida, M. Sugiyama et al., “Genome-wide association of IL28B with response to pegylated interferon-α and ribavirin therapy for chronic hepatitis C,” Nature Genetics, vol. 41, no. 10, pp. 1105–1109, 2009.
[8]  D. Ge, J. Fellay, A. J. Thompson et al., “Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance,” Nature, vol. 461, no. 7262, pp. 399–401, 2009.
[9]  M. B. Lodoen and L. L. Lanier, “Viral modulation of NK cell immunity,” Nature Reviews Microbiology, vol. 3, no. 1, pp. 59–69, 2005.
[10]  A. Ahmad and F. Alvarez, “Role of NK and NKT cells in the immunopathogenesis of HCV-induced hepatitis,” Journal of Leukocyte Biology, vol. 76, no. 4, pp. 743–759, 2004.
[11]  S. Shimoda, K. Harada, H. Niiro et al., “Interaction between Toll-like receptors and natural killer cells in the destruction of bile ducts in primary biliary cirrhosis,” Hepatology, vol. 53, no. 4, pp. 1270–1281, 2011.
[12]  E. Ogawa, N. Furusyo, M. Murata et al., “Insulin resistance undermines the advantages of IL28B polymorphism in the pegylated interferon alpha-2b and ribavirin treatment of chronic hepatitis C patients with genotype 1,” Journal of Hepatology, vol. 57, no. 3, pp. 534–540, 2012.
[13]  D. L. Thomas, C. L. Thio, M. P. Martin et al., “Genetic variation in IL28B and spontaneous clearance of hepatitis C virus,” Nature, vol. 461, no. 7265, pp. 798–801, 2009.
[14]  K. Cheent and S. I. Khakoo, “Natural killer cells and hepatitis C: action and reaction,” Gut, vol. 60, no. 2, pp. 268–278, 2011.
[15]  S. Jost and M. Altfeld, “Control of human viral infections by natural killer cells,” Annual Review of Immunology, vol. 31, pp. 163–194, 2013.
[16]  T. Miyagi, T. Takehara, K. Nishio et al., “Altered interferon-α-signaling in natural killer cells from patients with chronic hepatitis C virus infection,” Journal of Hepatology, vol. 53, no. 3, pp. 424–430, 2010.
[17]  B. Edlich, G. Ahlenstiel, A. Z. Azpiroz et al., “Early changes in interferon signaling define natural killer cell response and refractoriness to interferon-based therapy of hepatitis C patients,” Hepatology, vol. 55, no. 1, pp. 39–48, 2012.
[18]  D. D. Anthony, S. J. Conry, K. Medvik et al., “Baseline levels of soluble CD14 and CD16+56? natural killer cells are negatively associated with response to interferon/ribavirin therapy during HCV-HIV-1 coinfection,” Journal of Infectious Diseases, vol. 206, no. 6, pp. 969–973, 2012.
[19]  G. Ahlenstiel, B. Edlich, L. J. Hogdal et al., “Early changes in natural killer cell function indicate virologic response to interferon therapy for hepatitis C,” Gastroenterology, vol. 141, no. 4, pp. 1231–e2, 2011.
[20]  G. Ahlenstiel, R. H. Titerence, C. Koh et al., “Natural killer cells are polarized toward cytotoxicity in chronic hepatitis C in an interferon-alfa-dependent manner,” Gastroenterology, vol. 138, no. 1, pp. 325–335, 2010.
[21]  B. Oliviero, D. Mele, E. Degasperi et al., “Natural killer cell dynamic profile is associated with treatment outcome in patients with chronic HCV infection,” Journal of Hepatology, vol. 59, no. 1, pp. 38–44, 2013.
[22]  S. I. Khakoo, C. L. Thio, M. P. Martin et al., “HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection,” Science, vol. 305, no. 5685, pp. 872–874, 2004.
[23]  T. Marcello, A. Grakoui, G. Barba-Spaeth et al., “Interferons alpha and lambda inhibit hepatitis C virus replication with distinct signal transduction and gene regulation kinetics,” Gastroenterology, vol. 131, no. 6, pp. 1887–1898, 2006.
[24]  K. A. Stegmann, N. K. Bj?rkstr?m, H. Veber et al., “Interferon-alpha-induced TRAIL on natural killer cells is associated with control of hepatitis C virus infection,” Gastroenterology, vol. 138, no. 5, pp. 1885–e10, 2010.
[25]  M. M. Dring, M. H. Morrison, B. P. McSharry et al., “Innate immune genes synergize to predict increased risk of chronic disease in hepatitis C virus infection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 14, pp. 5736–5741, 2011.
[26]  L. Golden-Mason, A. E. Stone, K. M. Bambha, L. Cheng, and H. R. Rosen, “Race- and gender-related variation in natural killer p46 expression associated with differential anti-hepatitis C virus immunity,” Hepatology, vol. 56, no. 4, pp. 1214–1222, 2012.
[27]  B. Kr?mer, C. K?rner, M. Kebschull et al., “Natural killer p46High expression defines a natural killer cell subset that is potentially involved in control of hepatitis C virus replication and modulation of liver fibrosis,” Hepatology, vol. 56, no. 4, pp. 1201–1213, 2012.
[28]  L. Golden-Mason, K. M. Bambha, L. Cheng et al., “Natural killer inhibitory receptor expression associated with treatment failure and interleukin-28B genotype in patients with chronic hepatitis C,” Hepatology, vol. 54, no. 5, pp. 1559–1569, 2011.
[29]  F. Bozzano, A. Picciotto, P. Costa et al., “Activating NK cell receptor expression/function (NKp30, NKp46, DNAM-1) during chronic viraemic HCV infection is associated with the outcome of combined treatment,” European Journal of Immunology, vol. 41, no. 10, pp. 2905–2914, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133