全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Indirect Comparison Showed Survival Benefit from Adjuvant Chemoradiotherapy in Completely Resected Gastric Cancer with D2 Lymphadenectomy

DOI: 10.1155/2013/634929

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. Little data on directly comparing chemoradiotherapy with observation has yet been published in the setting of adjuvant therapy for resected gastric cancer who underwent D2 lymphadenectomy. The present indirect comparison aims to provide more evidence on comparing the two approaches. Methods. We conducted a systematic review of randomized controlled trials, extracted time-to-event data using Tierney methods (when not reported), and performed indirect comparison to obtain the relative hazards of adjuvant chemoradiotherapy to observation on overall and disease-free survival. Results. seven randomized controlled trials were identified. Three trials compared adjuvant chemoradiotherapy with adjuvant chemotherapy, and 4 trials compared adjuvant chemotherapy with observation. Using indirect comparison, the relative hazards of adjuvant chemoradiotherapy to observation were 0.43 (95% CI: 0.33–0.55) in disease-free survival and 0.52 (95% CI: 0.38–0.71) in overall survival for completely resected gastric cancer with D2 lymphadenectomy. Conclusions. Postoperative chemoradiotherapy can prolong survival and decrease recurrence in patients with resected gastric cancer who underwent D2 gastrectomy. Molecular biomarker might be a promising direction in the prediction of clinical outcome to postoperative chemoradiotherapy, which warranted further study. 1. Introduction Gastric cancer is the third leading cause of cancer-related death among men and the fifth among women in the worldwide [1]. The primary curative treatment of gastric carcinoma is surgical resection [2]. Complete resection with adequate margins is widely considered as a standard goal, whereas the extent of lymph node dissection remains controversial. Irrespective of the surgical procedure used for the treatment of gastric cancer, the effectiveness of surgical resection is poor; about 60% eventually have local relapse or distant metastases after curative resection [3]. The high rate of relapse or distant metastases after resection make it important to consider adjuvant treatment for patients with resected gastric cancer. The INT-0116 trial [4, 5], the largest phase III trial comparing chemoradiotherapy versus observation, shows that adjuvant chemoradiotherapy prolonged overall survival (OS) and relapse-free survival (RFS). In this trial, 10% of the patients underwent D2 dissection, suggesting that chemoradiotherapy might be only compensating for inadequate surgery. Therefore, the role of chemoradiation therapy after D2 dissection has been questioned. Two retrospective studies demonstrated that

References

[1]  A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA Cancer Journal for Clinicians, vol. 61, no. 2, pp. 69–90, 2011.
[2]  J. S. Macdonald, “Role of post-operative chemoradiation in resected gastric cancer,” Journal of Surgical Oncology, vol. 90, no. 3, pp. 166–170, 2005.
[3]  O. Bouché, M. Ychou, P. Burtin et al., “Adjuvant chemotherapy with 5-fluorouracil and cisplatin compared with surgery alone for gastric cancer: 7-year results of the FFCD randomized phase III trial (8801),” Annals of Oncology, vol. 16, no. 9, pp. 1488–1497, 2005.
[4]  J. S. Macdonald, S. R. Smalley, J. Benedetti et al., “Chemoradiotherapy after surgery compared with surgery alone for adenocarcinoma of the stomach or gastroesophageal junction,” The New England Journal of Medicine, vol. 345, no. 10, pp. 725–730, 2001.
[5]  S. R. Smalley, J. K. Benedetti, D. G. Haller, et al., “Updated analysis of SWOG-directed intergroup study 0116: a phase III trial of adjuvant radiochemotherapy versus observation after curative gastric cancer resection,” Journal of Clinical Oncology, vol. 30, no. 19, pp. 2327–2333, 2012.
[6]  C. N. Leong, H. T. Chung, K. M. Lee et al., “Outcomes of adjuvant chemoradiotherapy after a radical gastrectomy and a D2 node dissection for gastric adenocarcinoma,” Cancer Journal, vol. 14, no. 4, pp. 269–275, 2008.
[7]  S. Kim, D. H. Lim, J. Lee et al., “An observational study suggesting clinical benefit for adjuvant postoperative chemoradiation in a population of over 500 cases after gastric resection with D2 nodal dissection for adenocarcinoma of the stomach,” International Journal of Radiation Oncology Biology Physics, vol. 63, no. 5, pp. 1279–1285, 2005.
[8]  S. H. Park, D. Y. Kim, J. S. Heo et al., “Postoperative chemoradiotherapy for gastric cancer,” Annals of Oncology, vol. 14, no. 9, pp. 1373–1377, 2003.
[9]  A. R. Jadad, R. A. Moore, D. Carroll et al., “Assessing the quality of reports of randomized clinical trials: is blinding necessary?” Controlled Clinical Trials, vol. 17, no. 1, pp. 1–12, 1996.
[10]  J. F. Tierney, L. A. Stewart, D. Ghersi, S. Burdett, and M. R. Sydes, “Practical methods for incorporating summary time-to-event data into meta-analysis,” Trials, vol. 7, no. 8, 2007.
[11]  H. C. Bucher, G. H. Guyatt, L. E. Griffith, and S. D. Walter, “The results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trials,” Journal of Clinical Epidemiology, vol. 50, no. 6, pp. 683–691, 1997.
[12]  J. Lee, D. H. Lim, S. Kim et al., “Phase III trial comparing capecitabine plus cisplatin versus capecitabine plus cisplatin with concurrent capecitabine radiotherapy in completely resected gastric cancer with D2 lymph node dissection: the ARTIST trial,” Journal of Clinical Oncology, vol. 30, no. 3, pp. 268–273, 2012.
[13]  W. G. Zhu, D. F. Xua, J. Pu, et al., “A randomized, controlled, multicenter study comparing intensity-modulated radiotherapy plus concurrent chemotherapy with chemotherapy alone in gastric cancer patients with D2 resection,” Radiotherapy and Oncology, vol. 104, no. 3, pp. 361–366, 2012.
[14]  T. H. Kim, S. R. Park, K. W. Ryu, et al., “Phase 3 trial of postoperative chemotherapy alone versus chemoradiation therapy in stage III-IV gastric cancer treated with Ro gastrectomy and D2 lymph node dissection,” International Journal of Radiation Oncology, vol. 84, no. 5, pp. e585–e592, 2012.
[15]  L. Cirera, A. Balil, E. Batiste-Alentorn et al., “Randomized clinical trial of adjuvant mitomycin plus tegafur in patients with resected stage III gastric cancer,” Journal of Clinical Oncology, vol. 17, no. 12, pp. 3810–3815, 1999.
[16]  T. Nakajima, T. Kinoshita, A. Nashimoto et al., “Randomized controlled trial of adjuvant uracil-tegafur versus surgery alone for serosa-negative, locally advanced gastric cancer,” British Journal of Surgery, vol. 94, no. 12, pp. 1468–1476, 2007.
[17]  M. Sasako, S. Sakuramoto, H. Katai et al., “Five-year outcomes of a randomized phase III trial comparing adjuvant chemotherapy with S-1 versus surgery alone in stage II or III gastric cancer,” Journal of Clinical Oncology, vol. 29, no. 33, pp. 4387–4393, 2011.
[18]  Y. J. Bang, Y. W. Kim, H. K. Yang et al., “Adjuvant capecitabine and oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): a phase 3 open-label, randomised controlled trial,” The Lancet, vol. 379, no. 9813, pp. 315–321, 2012.
[19]  F. Song, D. G. Altman, A. M. Glenny, and J. J. Deeks, “Validity of indirect comparison for estimating efficacy of competing interventions: empirical evidence from published meta-analyses,” British Medical Journal, vol. 326, no. 7387, pp. 472–475, 2003.
[20]  Y. Y. Huang, Q. Yang, S. W. Zhou, et al., “Postoperative chemoradiotherapy versus postoperative chemotherapy for completely resected gastric cancer with D2 lymphadenectomy: a meta-analysis,” PLoS ONE, vol. 8, no. 7, Article ID e68939, 2013.
[21]  J. Landry, J. E. Tepper, W. C. Wood, E. O. Moulton, F. Koerner, and J. Sullinger, “Patterns of failure following curative resection of gastric carcinoma,” International Journal of Radiation Oncology Biology Physics, vol. 19, no. 6, pp. 1357–1362, 1990.
[22]  C. Hsu, Y. C. Shen, C. C. Cheng, A. L. Cheng, F. C. Hu, and K. H. Yeh, “Geographic difference in safety and efficacy of systemic chemotherapy for advanced gastric or gastroesophageal carcinoma: a meta-analysis and meta-regression,” Gastric Cancer, pp. 1–16, 2012.
[23]  G. A. Brooks, P. C. Enzinger, and C. S. Fuchs, “Adjuvant therapy for gastric cancer: revisiting the past to clarify the future,” Journal of Clinical Oncology, vol. 30, no. 19, pp. 2297–2299, 2012.
[24]  R. N. R. Zárate, F. Arias, E. Bandres, E. Cubedo, R. Malumbres, and J. García-Foncillas, “Xeroderma pigmentosum group D 751 polymorphism as a predictive factor in resected gastric cancer treated with chemo-radiotherapy,” World Journal of Gastroenterology, vol. 12, no. 37, pp. 6032–6036, 2006.
[25]  M. A. Gordon, H. M. Gundacker, J. Benedetti, et al., “Assessment of HER2 gene amplification in adenocarcinomas of the stomach or gastroesophageal junction in the INT-0116/SWOG9008 clinical trial,” Annals of Oncology, vol. 24, no. 7, pp. 1754–1761, 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133