全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Impact of Rechallenge with Imatinib in Patients with Advanced Gastrointestinal Stromal Tumor after Failure of Imatinib and Sunitinib

DOI: 10.1155/2014/342986

Full-Text   Cite this paper   Add to My Lib

Abstract:

Purpose. This retrospective, nonrandomized study investigated the effect of imatinib rechallenge plus best supportive care (BSC) on overall survival after imatinib and sunitinib treatment for patients with locally advanced or metastatic gastrointestinal stromal tumor (GIST). Methods. Twenty-six patients who had previously been exposed to both imatinib and sunitinib were enrolled in this study. The treatment regimen was BSC with or without imatinib, based on the patient’s choice after discussion with his or her physician. The primary endpoint was overall survival, and secondary endpoints were time to treatment failure, clinical response rate assessed by Choi criteria, and safety. Results. Fourteen patients were treated with imatinib plus BSC and 12 received BSC alone. Median overall survival was greatly improved for the imatinib group, although differences were not significant (22 months for imatinib plus BSC versus 4 months for BSC; ). Three patients (21%) had a clinical response in the imatinib group, and one had a clinical response in the BSC alone group. Imatinib was well tolerated. Conclusions. Rechallenge with imatinib may be associated with improvement in overall survival without deteriorating performance status in patients who failed imatinib and sunitinib. A prospective study should be considered to confirm the efficacy of rechallenge with imatinib. 1. Introduction Gastrointestinal stromal tumor (GIST) is the most common type of nonepithelial tumor occurring in the gastrointestinal (GI) tract, including the peritoneum [1]. GISTs cannot always be distinguished from myogenic or neurogenic neoplasms by routine histological methods; as such, immunohistochemistry is often needed to distinguish GISTs from other spindle cell tumors. GISTs are generally considered to be KIT (CD117) positive tumors [2]. The tumor probably arises from KIT or platelet-derived growth factor receptor A (PDGFRA) gene mutations in precursor cells that normally give rise to the interstitial cells of Cajal [3–5]. Some GISTs are clinically malignant and metastasize predominantly to the liver and peritoneum [1, 6, 7]. About 85–90% of GISTs are associated with gain-of-function KIT gene mutations that lead to constitutive activation of KIT kinase activity [3]. A much smaller proportion of GISTs are associated with analogous gain-of-function mutations in PDGFRA, the gene-encoding platelet-derived growth factor receptor (PDGFR ); less than 10% contain no identified receptor tyrosine kinase mutations [8, 9]. Activating mutations of KIT or PDGFRA have been identified in the development

References

[1]  M. Miettinen and J. Lasota, “Gastrointestinal stromal tumors—definition, clinical, histological, immunohistochemical, and molecular genetic features and differential diagnosis,” Virchows Archiv, vol. 438, no. 1, pp. 1–12, 2001.
[2]  M. Sarlomo-Rikala, A. J. Kovatich, A. Barusevicius, and M. Miettinen, “CD117: a sensitive marker for gastrointestinal stromal tumors that is more specific than CD34,” Modern Pathology, vol. 11, no. 8, pp. 728–734, 1998.
[3]  S. Hirota, K. Isozaki, Y. Moriyama et al., “Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors,” Science, vol. 279, no. 5350, pp. 577–580, 1998.
[4]  K. Sircar, B. R. Hewlett, J. D. Huizinga, K. Chorneyko, I. Berezin, and R. H. Riddell, “Interstitial cells of cajal as precursors of gastrointestinal stromal tumors,” American Journal of Surgical Pathology, vol. 23, no. 4, pp. 377–389, 1999.
[5]  L. Wang, H. Vargas, and S. W. French, “Cellular origin of gastrointestinal stromal tumors: a study of 27 cases,” Archives of Pathology and Laboratory Medicine, vol. 124, no. 10, pp. 1471–1475, 2000.
[6]  R. P. DeMatteo, J. J. Lewis, D. Leung, S. S. Mudan, J. M. Woodruff, and M. F. Brennan, “Two hundred gastrointestinal stromal tumors: recurrence patterns and prognostic factors for survival,” Annals of Surgery, vol. 231, no. 1, pp. 51–58, 2000.
[7]  J.-P. E. N. Pierie, U. Choudry, A. Muzikansky, B. Y. Yeap, W. W. Souba, and M. J. Ott, “The effect of surgery and grade on outcome of gastrointestinal stromal tumors,” Archives of Surgery, vol. 136, no. 4, pp. 383–389, 2001.
[8]  M. C. Heinrich, C. L. Corless, G. D. Demetri et al., “Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor,” Journal of Clinical Oncology, vol. 21, no. 23, pp. 4342–4349, 2003.
[9]  M. C. Heinrich, C. L. Corless, A. Duensing et al., “PDGFRA activating mutations in gastrointestinal stromal tumors,” Science, vol. 299, no. 5607, pp. 708–710, 2003.
[10]  G. D. Demetri, M. Von Mehren, C. D. Blanke et al., “Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors,” The New England Journal of Medicine, vol. 347, no. 7, pp. 472–480, 2002.
[11]  H. Joensuu, C. Fletcher, S. Dimitrijevic, S. Silberman, P. Roberts, and G. Demetri, “Management of malignant gastrointestinal stromal tumours,” Lancet Oncology, vol. 3, no. 11, pp. 655–664, 2002.
[12]  J. Verweij, P. G. Casali, J. Zalcberg et al., “Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial,” The Lancet, vol. 364, no. 9440, pp. 1127–1134, 2004.
[13]  T. J. Abrams, L. B. Lee, L. J. Murray, et al., “SU11248 inhibits KIT and platelet-derived growth factor receptor beta in preclinical models of human small cell lung cancer,” Molecular Cancer Therapeutics, vol. 2, pp. 471–478, 2003.
[14]  D. B. Mendel, A. Douglas Laird, X. Xin et al., “In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship,” Clinical Cancer Research, vol. 9, no. 1 I, pp. 327–337, 2003.
[15]  L. J. Murray, T. J. Abrams, K. R. Long et al., “SU11248 inhibits tumor growth and CSF-1R-dependent osteolysis in an experimental breast cancer bone metastasis model,” Clinical and Experimental Metastasis, vol. 20, no. 8, pp. 757–766, 2003.
[16]  A.-M. O'Farrell, T. J. Abrams, H. A. Yuen et al., “SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo,” Blood, vol. 101, no. 9, pp. 3597–3605, 2003.
[17]  K. L. Osusky, D. E. Hallahan, A. Fu, F. Ye, Y. Shyr, and L. Geng, “The receptor tyrosine kinase inhibitor SU11248 impedes endothelial cell migration, tubule formation, and blood vessel formation in vivo, but has little effect on existing tumor vessels,” Angiogenesis, vol. 7, no. 3, pp. 225–233, 2004.
[18]  A. J. Schueneman, E. Himmelfarb, L. Geng et al., “SU11248 maintenance therapy prevents tumor regrowth after fractionated irradiation of murine tumor models,” Cancer Research, vol. 63, no. 14, pp. 4009–4016, 2003.
[19]  G. D. Demetri, A. T. van Oosterom, C. R. Garrett et al., “Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial,” The Lancet, vol. 368, no. 9544, pp. 1329–1338, 2006.
[20]  G. D. Demetri, P. Reichardt, Y. K. Kang, et al., “Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial,” The Lancet, vol. 381, pp. 295–302, 2013.
[21]  P. G. Casali, L. Jost, P. Reichardt, M. Schlemmer, and J.-Y. Blay, “Gastrointestinal stromal tumours: ESMO Clinical Recommendations for diagnosis, treatment and follow-up,” Annals of Oncology, vol. 20, no. 4, pp. iv64–iv67, 2009.
[22]  R. S. Benjamin, H. Choi, H. A. Macapinlac et al., “We should desist using RECIST, at least in GIST,” Journal of Clinical Oncology, vol. 25, no. 13, pp. 1760–1764, 2007.
[23]  H. Choi, C. Charnsangavej, S. C. Faria et al., “Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: Proposal of new computed tomography response criteria,” Journal of Clinical Oncology, vol. 25, no. 13, pp. 1753–1759, 2007.
[24]  http://www.nccn.org/professionals/physician_gls/PDF/sarcoma.pdf.
[25]  J.-L. Lee, M.-H. Ryu, H. M. Chang et al., “Clinical outcome in gastrointestinal stromal tumor patients who interrupted imatinib after achieving stable disease or better response,” Japanese Journal of Clinical Oncology, vol. 36, no. 11, pp. 704–711, 2006.
[26]  J.-Y. Blay, A. Le Cesne, I. Ray-Coquard et al., “Prospective multicentric randomized phase III study of imatinib in patients with advanced gastrointestinal stromal tumors comparing interruption versus continuation of treatment beyond 1 year: the French sarcoma group,” Journal of Clinical Oncology, vol. 25, no. 9, pp. 1107–1113, 2007.
[27]  J. Domont, J. Blay, I. L. Ray-Coquard, et al., “Influence of imatinib interruption and imatinib rechallenge on the residual tumor volume in patients with advanced GIST: result of the BFR14 prospective French Sarcoma Group randomized phase III trial,” Journal of Clinical Oncology, vol. 29, Article ID 10054, 2011.
[28]  B. Liegl, I. Kepten, C. Le et al., “Heterogeneity of kinase inhibitor resistance mechanisms in GIST,” Journal of Pathology, vol. 216, no. 1, pp. 64–74, 2008.
[29]  M. C. Heinrich, C. L. Corless, C. D. Blanke et al., “Molecular correlates of imatinib resistance in gastrointestinal stromal tumors,” Journal of Clinical Oncology, vol. 24, no. 29, pp. 4764–4774, 2006.
[30]  N. P. Agaram, P. Besmer, G. C. Wong et al., “Pathologic and molecular heterogeneity in imatinib-stable or imatinib-responsive gastrointestinal stromal tumors,” Clinical Cancer Research, vol. 13, no. 1, pp. 170–181, 2007.
[31]  H. Prenen, J. Cools, N. Mentens et al., “Efficacy of the kinase inhibitor SU11248 against gastrointestinal stromal tumor mutants refractory to imatinib mesylate,” Clinical Cancer Research, vol. 12, no. 8, pp. 2622–2627, 2006.
[32]  E. Wardelmann, S. Merkelbach-Bruse, K. Pauls et al., “Polyclonal evolution of multiple secondary KIT mutations in gastrointestinal stromal tumors under treatment with imatinib mesylate,” Clinical Cancer Research, vol. 12, no. 6, pp. 1743–1749, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133