全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Role of Epilepsy Surgery in the Treatment of Childhood Epileptic Encephalopathy

DOI: 10.1155/2013/983049

Full-Text   Cite this paper   Add to My Lib

Abstract:

Children with epileptic encephalopathy often have global impairment of brain function and frequent intractable seizures, which contribute further to their developmental disability. Many of these children have identifiable brain lesion on neurological imaging. In such cases, epilepsy surgery may be considered as a treatment option despite the lack of localized epileptic pattern on electroencephalogram (EEG). In this paper, we summarize the clinical features of epileptic encephalopathy syndromes and review the reported literature on the surgical approach to some of these disorders. 1. Introduction Epileptic encephalopathy is defined as a condition in which the epileptiform abnormalities themselves are believed to contribute to the progressive disturbance in cerebral function [1]. The report of the International League Against Epilepsy (ILAE) Task Force on Classification and Terminology includes eight syndromes under epileptic encephalopathies. One common feature among these epilepsy syndromes is the suboptimal response to treatment with antiepileptic medications. This invited the utilization of epilepsy surgery in selected patients who have structural brain lesion believed to be the cause of epilepsy. In this paper, we briefly review the clinical features of different epileptic encephalopathy syndromes and summarize the reported literature on the surgical approach and management of some of these disorders. 2. Classification of Epileptic Encephalopathies According to the age of onset, epileptic encephalopathy syndromes may be divided into two main groups. 2.1. Infantile Epileptic Encephalopathies 2.1.1. Ohtahara Syndrome First described in 1976 by Ohtahara, Ohtahara Syndrome is characterized by tonic seizures and burst suppression pattern on EEG [2]. Symptoms develop earlier than other forms of epileptic encephalopathies within the first 3 months of life, usually in the first 10 days. Etiology is unclear but it generally accompanies structural brain anomalies. Seventy-five percent of cases turn into West syndrome within 3 to 6 months, and some of these turn into Lennox-Gastaut syndrome. Seizures are resistant to treatment and generally have a poor prognosis. 2.1.2. Early Myoclonic Encephalopathy Has an early onset within the first few months of life in the form of erratic, fragmentary, or massive myoclonic seizures. Frequency varies from occasional to almost continuous myoclonus. Infants have severe delay in development, hypotonia, and disturbed alertness, sometimes with vegetative state. EEG is characterized by a burst-suppression pattern. Erratic

References

[1]  J. Engel Jr., “A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE task force on classification and terminology,” Epilepsia, vol. 42, no. 6, pp. 796–803, 2001.
[2]  S. Ohtahara, T. Ishida, E. Oka, Y. Yamatogi, and H. Inoue, “On the specific age-dependent epileptic syndrome: the early-infantile epileptic encephalopathy with suppression-burst,” No to Hattatsu, vol. 8, pp. 270–280, 1976.
[3]  B. D. Bernardina, O. Dulac, and N. Fejerman, “Early myoclonic epileptic encephalopathy,” European Journal of Pediatrics, vol. 140, no. 3, pp. 248–252, 1983.
[4]  P. Jeavons and M. O. Livet, “West syndrome: infantile spasms,” in Epileptic Syndromes in Infancy, Childhood and Adolescence, J. Roger, M. Bureau, C. Dravet, et al., Eds., pp. 53–65, John Libbey, London, UK, 2nd edition, 1992.
[5]  F. Vigevano, L. Fusco, R. Cusmai et al., “The idiopathic form of West syndrome,” Epilepsia, vol. 34, no. 4, pp. 743–746, 1993.
[6]  A. M. Hong, Z. Turner, R. F. Hamdy, and E. H. Kossoff, “Infantile spasms treated with the ketogenic diet: prospective single-center experience in 104 consecutive infants,” Epilepsia, vol. 51, no. 8, pp. 1403–1407, 2010.
[7]  U. Kramer, W. C. Sue, and M. A. Mikati, “Focal features in West syndrome indicating candidacy for surgery,” Pediatric Neurology, vol. 16, no. 3, pp. 213–217, 1997.
[8]  C. Dravet, M. Bureau, R. Guerrini, et al., “Severe myoclonic epilepsy in infants,” in Epileptic Syndromes in Infancy, Childhood and Adolescence, J. Roger, M. Bureau, C. Dravet, et al., Eds., pp. 75–88, John Libbey, London, UK, 2nd edition, 1992.
[9]  G. Fukuma, H. Oguni, Y. Shirasaka et al., “Mutations of neuronal voltage-gated Na+ channel α1 subunit Gene SCN1A in core severe myoclonic epilepsy in infancy (SMEI) and in borderline SMEI (SMEB),” Epilepsia, vol. 45, no. 2, pp. 140–148, 2004.
[10]  A. Arzimanoglou, J. French, W. T. Blume et al., “Lennox-Gastaut syndrome: a consensus approach on diagnosis, assessment, management, and trial methodology,” The Lancet Neurology, vol. 8, no. 1, pp. 82–93, 2009.
[11]  H. Heiskala, “Community-based study of Lennox-Gastaut syndrome,” Epilepsia, vol. 38, no. 5, pp. 526–531, 1997.
[12]  J. J. Chevrie and J. Aicardi, “Childhood epileptic encephalopathy with slow spike-wave. A statistical study of 80 cases,” Epilepsia, vol. 13, no. 2, pp. 259–271, 1972.
[13]  M. Bureau, “Continuous spikes and waves during slow sleep (CSWS): definition of the syndrome,” in Continuous Spikes and Waves During Slow Sleep Or ESES, A. Beaumanoir, M. Bureau, T. Deonna, L. Mira, and C. A. Tassinari, Eds., pp. 17–26, John Libbey, London, UK, 1995.
[14]  R. Guerrini, P. Genton, M. Bureau et al., “Multilobar polymicrogyria, intractable drop attack seizures, and sleep- related electrical status epilepticus,” Neurology, vol. 51, no. 2, pp. 504–512, 1998.
[15]  F. Morrell, “Electrophysiology of CSWS in Landau-Kleffner syndrome,” in Continuous Spikes and Waves During Slow Sleep, A. Beaumanoir, M. Bureau, T. Deonna, L. Mira, and C. A. Tassinari, Eds., pp. 77–90, John Libbey, London, UK, 1995.
[16]  W. M. Landau and F. R. Kleffner, “Syndrome of acquired aphasia with convulsive disorder in children,” Neurology, vol. 7, no. 8, pp. 523–530, 1957.
[17]  Z. Kural and A. F. Ozer, “Epileptic encephalopathies in adults and childhood,” Epilepsy Research and Treatment, vol. 2012, Article ID 205131, 8 pages, 2012.
[18]  S. Khan and R. Al Baradie, “Epileptic encephalopathies: an overview,” Epilepsy Research and Treatment, vol. 2012, Article ID 403592, 8 pages, 2012.
[19]  J. Engel Jr., G. D. Cascino, and W. D. Shields, “Surgically remediable syndromes,” in Epilepsy: A Comprehensive Textbook, J. Engel Jr., T. A. Pedley, and J. Aicardi, Eds., pp. 1687–1696, Lippincott-Raven, Philadelphia, Pa, USA, 1998.
[20]  F. Morrell, “Varieties of human secondary epileptogenesis,” Journal of Clinical Neurophysiology, vol. 6, pp. 227–275, 1989.
[21]  E. Wyllie, Y. Comair, P. Ruggieri, S. Raja, and R. Prayson, “Epilepsy surgery in the setting of periventricular leukomalacia and focal cortical dysplasia,” Neurology, vol. 46, no. 3, pp. 839–841, 1996.
[22]  H. T. Chugani, W. D. Shields, D. A. Shewmon, D. M. Olson, M. E. Phelps, and W. J. Peacock, “Infantile spasms: i. PET identifies focal cortical dysgenesis in cryptogenic cases for surgical treatment,” Annals of Neurology, vol. 27, no. 4, pp. 406–413, 1990.
[23]  E. Wyllie, D. K. Lachhwani, A. Gupta et al., “Successful surgery for epilepsy due to early brain lesions despite generalized EEG findings,” Neurology, vol. 69, no. 4, pp. 389–397, 2007.
[24]  Y. J. Lee, H. C. Kang, J. S. Lee et al., “Resective pediatric epilepsy surgery in Lennox-Gastaut syndrome,” Pediatrics, vol. 125, no. 1, pp. e58–e66, 2010.
[25]  S.-Y. Liu, N. An, X. Fang et al., “Surgical treatment of patients with Lennox-Gastaut syndrome phenotype,” The Scientific World Journal, vol. 2012, Article ID 614263, 10 pages, 2012.
[26]  U. Gleissner, R. Sassen, J. Schramm, C. E. Elger, and C. Helmstaedter, “Greater functional recovery after temporal lobe epilepsy surgery in children,” Brain, vol. 128, no. 12, pp. 2822–2829, 2005.
[27]  A. T. Berg, “UNderstanding the delay before epilepsy surgery: who develops intractable focal epilepsy and when?” CNS Spectrums, vol. 9, no. 2, pp. 136–144, 2004.
[28]  H. Freitag and I. Tuxhorn, “Cognitive function in preschool children after epilepsy surgery: rationale for early intervention,” Epilepsia, vol. 46, no. 4, pp. 561–567, 2005.
[29]  R. Van Empelen, A. Jennekens-Schinkel, P. C. Van Rijen, P. J. M. Helders, and O. Van Nieuwenhuizen, “Health-related quality of life and self-perceived competence of children assessed before and up to two years after epilepsy surgery,” Epilepsia, vol. 46, no. 2, pp. 258–271, 2005.
[30]  M. Sabaz, J. A. Lawson, D. R. Cairns et al., “The impact of epilepsy surgery on quality of life in children,” Neurology, vol. 66, no. 4, pp. 557–561, 2006.
[31]  R. A. Hrachovy, J. D. Frost, D. G. Glaze, and P. Kellaway, “SUrgical treatment for infantile spasms?” Annals of Neurology, vol. 29, no. 1, pp. 110–111, 1991.
[32]  J. Aicardi, “Evolution of epilepsy surgery in childhood: the neurologist's point of view,” Epileptic Disorders, vol. 1, no. 4, pp. 243–247, 1999.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133