Epileptic encephalopathies refer to a group of disorders in which the unremitting epileptic activity contributes to severe cognitive and behavioral impairments above and beyond what might be expected from the underlying pathology alone, and these can worsen over time leading to progressive cerebral dysfunction. Several syndromes have been described based on their electroclinical features (age of onset, seizure type, and EEG pattern). This review briefly describes the clinical evaluation and management of commonly encountered epileptic encephalopathies in children. 1. Introduction The term “epileptic encephalopathy” refers to a group of disorders in which the unremitting epileptic activity contributes to progressive cerebral dysfunction. This cannot be explained by the underlying etiology alone [1]. It may be progressive or have waxing-waning course. The underlying etiology is diverse. Their clinical and electroencephalographic (EEG) features mirror the specific age-related epileptogenic reaction of the immature brain. The various syndromes of epileptic encephalopathy are tabulated in Table 1. This review will briefly discuss the diagnosis and management of these syndromes according to the age of onset. Table 1: Epileptic encephalopathies. 2. Early Infantile Epileptic Encephalopathies This group of disorders comprises Ohtahara syndrome or early infantile epileptic encephalopathy (EIEE), early myoclonic encephalopathy (EME), and malignant migrating partial seizures in infancy. Ohtahara syndrome is a devastating epilepsy with onset ranging from intrauterine period to 3 months of age. The tonic spasms are the defining seizure type which are very frequent and occur in both sleep and wakeful states. Besides these, partial and rarely myoclonic seizures may be observed. The interictal EEG shows burst suppression pattern with no sleep-wake differentiation. The bursts last for 2–6 seconds alternating with periods of suppression lasting for 3–5 seconds. The underlying causes are heterogenous. The majority of cases are attributable to static structural brain lesions such as focal cortical dysplasia, hemimegalencephaly, and Aicardi syndrome [2, 3]. Few genetic mutations have been described but these are not specific for Ohtahara syndrome [4, 5]. These include mutations in the syntaxin binding protein-1 (STXBP-1) [6], Aristaless-related homeobox (ARX) [7], and SLC25A22-gene encoding a mitochondrial glutamate carrier [8]. An epileptic encephalopathy similar to Ohtahara syndrome, attributable to mutations in the KCNQ2 gene that encodes the voltage-gated potassium
References
[1]
A. T. Berg, S. F. Berkovic, M. J. Brodie et al., “Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009,” Epilepsia, vol. 51, no. 4, pp. 676–685, 2010.
[2]
S. Ohtahara and Y. Yamatogi, “Epileptic encephalopathies in early infancy with suppression-burst,” Journal of Clinical Neurophysiology, vol. 20, no. 6, pp. 398–407, 2003.
[3]
Y. Yamatogi and S. Ohtahara, “Early-infantile epileptic encephalopathy with suppression-bursts, Ohtahara syndrome; its overview referring to our 16 cases,” Brain and Development, vol. 24, no. 1, pp. 13–23, 2002.
[4]
M. Mastrangelo and V. Leuzzi, “Genes of early-onset epileptic encephalopathies: from genotype to phenotype,” Pediatric Neurology, vol. 46, no. 1, pp. 24–31, 2012.
[5]
P. Pavone, A. Spalice, A. Polizzi, P. Parisi, and M. Ruggieri, “Ohtahara syndrome with emphasis on recent genetic discovery,” Brain and Development, vol. 34, pp. 459–468, 2012.
[6]
H. Saitsu, M. Kato, T. Mizuguchi et al., “De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic encephalopathy,” Nature Genetics, vol. 40, no. 6, pp. 782–788, 2008.
[7]
S. Sartori, R. Polli, E. Bettella et al., “Pathogenic role of the X-linked cyclin-dependent kinase-like 5 and aristaless-related homeobox genes in epileptic encephalopathy of unknown etiology with onset in the first year of life,” Journal of Child Neurology, vol. 26, no. 6, pp. 683–691, 2011.
[8]
F. Molinari, A. Kaminska, G. Fiermonte et al., “Mutations in the mitochondrial glutamate carrier SLC25A22 in neonatal epileptic encephalopathy with suppression bursts,” Clinical Genetics, vol. 76, no. 2, pp. 188–194, 2009.
[9]
S. Weckhuysen, S. Mandelstam, A. Suls et al., “KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy,” Annals of Neurology, vol. 71, no. 1, pp. 15–25, 2012.
[10]
M. Ishii, M. Shimono, A. Senju, K. Kusuhara, and N. Shiota, “The ketogenic diet as an effective treatment for Ohtahara syndrome,” No To Hattatsu, vol. 43, no. 1, pp. 47–50, 2011.
[11]
S. I. Malik, C. A. Galliani, A. W. Hernandez, and D. J. Donahue, “Epilepsy surgery for early infantile epileptic encephalopathy (Ohtahara Syndrome),” Journal of Child Neurology, 2012.
[12]
P. Wang, W. Lee, W. Hwu, C. Young, K. T. Yau, and Y. Shen, “The controversy regarding diagnostic criteria for early myoclonic encephalopathy,” Brain and Development, vol. 20, no. 7, pp. 530–535, 1998.
[13]
S. Sharma and A. N. Prasad, “Genetic testing of epileptic encephalopathies of infancy: an approach,” Canadian Journal of Neurological Sciences, vol. 40, pp. 10–16, 2013.
[14]
R. Cusmai, D. Martinelli, R. Moavero et al., “Ketogenic diet in early myoclonic encephalopathy due to non ketotic hyperglycinemia,” European Journal of Paediatric Neurology, vol. 16, pp. 509–513, 2012.
[15]
G. Coppola, “Malignant migrating partial seizures in infancy: an epilepsy syndrome of unknown etiology,” Epilepsia, vol. 50, supplement 5, pp. 49–51, 2009.
[16]
G. Coppola, P. Plouin, C. Chiron, O. Robain, and O. Dulac, “Migrating partial seizures in infancy: a malignant disorder with developmental arrest,” Epilepsia, vol. 36, no. 10, pp. 1017–1024, 1995.
[17]
D. Carranza Rojo, L. Hamiwka, J. M. McMahon et al., “De novo SCN1A mutations in migrating partial seizures of infancy,” Neurology, vol. 77, no. 4, pp. 380–383, 2011.
[18]
E. R. Freilich, J. M. Jones, W. D. Gaillard et al., “Novel SCN1A mutation in a proband with malignant migrating partial seizures of infancy,” Archives of Neurology, vol. 68, no. 5, pp. 665–671, 2011.
[19]
A. Poduri, S. S. Chopra, E. G. Neilan, et al., “Homozygous PLCB1 deletion associated with malignant migrating partial seizures in infancy,” Epilepsia, vol. 53, pp. e146–e150, 2012.
[20]
K. Okuda, A. Yasuhara, A. Kamei, A. Araki, N. Kitamura, and Y. Kobayashi, “Successful control with bromide of two patients with malignant migrating partial seizures in infancy,” Brain and Development, vol. 22, no. 1, pp. 56–59, 2000.
[21]
J. Perez, C. Chiron, C. Musial et al., “Stiripentol: efficacy and tolerability in children with epilepsy,” Epilepsia, vol. 40, no. 11, pp. 1618–1626, 1999.
[22]
L. L. Fran?ois, V. Manel, C. Rousselle, and M. David, “Ketogenic regime as anti-epileptic treatment: its use in 29 epileptic children,” Archives de Pédiatrie, vol. 10, pp. 300–306, 2003.
[23]
W. J. West, “On a peculiar form of infantile convulsions,” The Lancet, vol. 35, no. 911, pp. 724–725, 1841.
[24]
C. Panayiotopoulos, A Clinical Guide to Epileptic Syndromes and Their Treatment, Springer, Berlin, Germany, 2nd edition, 2011.
[25]
F. Gibbs and E. Gibbs, Atlas of Encephalography, Addison-Wesley, Cambridge, Mass, USA, 1952.
[26]
R. A. Hrachovy, J. D. Frost Jr., and P. Kellaway, “Hypsarrhythmia: variations on the theme,” Epilepsia, vol. 25, no. 3, pp. 317–325, 1984.
[27]
A. R. Paciorkowski, L. L. Thio, and W. B. Dobyns, “Genetic and biologic classification of infantile spasms,” Pediatric Neurology, vol. 45, no. 6, pp. 355–367, 2011.
[28]
C. Y. Go, M. T. Mackay, S. K. Weiss, et al., “Evidence-based guideline update: medical treatment of infantile spasms. Report of the Guideline Development Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society,” Neurology, vol. 78, pp. 1974–1980, 2012.
[29]
R. Arya, S. Shinnar, and T. A. Glauser, “Corticosteroids for the treatment of infantile spasms: a systematic review,” Journal of Child Neurology, vol. 27, pp. 1284–1288, 2012.
[30]
E. H. Kossoff, E. F. Hedderick, Z. Turner, and J. M. Freeman, “A case-control evaluation of the ketogenic diet versus ACTH for new-onset infantile spasms,” Epilepsia, vol. 49, no. 9, pp. 1504–1509, 2008.
[31]
A. M. Hong, Z. Turner, R. F. Hamdy, and E. H. Kossoff, “Infantile spasms treated with the ketogenic diet: prospective single-center experience in 104 consecutive infants,” Epilepsia, vol. 51, no. 8, pp. 1403–1407, 2010.
[32]
S. Sharma, N. Sankhyan, S. Gulati, and A. Agarwala, “Use of the modified Atkins diet in infantile spasms refractory to first-line treatment,” Seizure, vol. 21, no. 1, pp. 45–48, 2012.
[33]
M. Yum, T. Ko, J. K. Lee, S. Hong, D. S. Kim, and J. Kim, “Surgical treatment for localization-related infantile spasms: excellent long-term outcomes,” Clinical Neurology and Neurosurgery, vol. 113, no. 3, pp. 213–217, 2011.
[34]
J. M. Pinard, O. Delalande, C. Chiron et al., “Callosotomy for epilepsy after West syndrome,” Epilepsia, vol. 40, no. 12, pp. 1727–1734, 1999.
[35]
D. R. Nordli Jr., C. M. Korff, J. Goldstein, S. Koh, L. Laux, and K. R. Kelley, “Cryptogenic late-onset epileptic spasms or late infantile epileptogenic encephalopathy?” Epilepsia, vol. 48, no. 1, pp. 206–208, 2007.
[36]
A. Arzimanoglou, R. Guerrini, and J. Aicardi, Aicardi’s Epilepsy in Children, Lippincott Williams and Wilkins, Philadelphia, Pa, USA, 4th edition, 2012.
[37]
S. F. Berkovic, A. Arzimanoglou, R. Kuzniecky, A. S. Harvey, A. Palmini, and F. Andermann, “Hypothalamic hamartoma and seizures: a treatable epileptic encephalopathy,” Epilepsia, vol. 44, no. 7, pp. 969–973, 2003.
[38]
J. Engel Jr., “Report of the ILAE classification core group,” Epilepsia, vol. 47, no. 9, pp. 1558–1568, 2006.
[39]
D. R. Nordli Jr., “Epileptic encephalopathies in infants and children,” Journal of Clinical Neurophysiology, vol. 29, pp. 420–424, 2012.
[40]
C. Dravet, “Les epilepsies graves de l’enfant,” Vie Medicale au Canada Fran?ais, vol. 8, pp. 543–548, 1978.
[41]
C. Dravet, “The core Dravet syndrome phenotype,” Epilepsia, vol. 52, supplement 2, pp. 3–9, 2011.
[42]
M. Bureau and B. D. Bernardina, “Electroencephalographic characteristics of Dravet syndrome,” Epilepsia, vol. 52, supplement 2, pp. 13–23, 2011.
[43]
R. Guerrini and H. Oguni, “Borderline Dravet syndrome: a useful diagnostic category?” Epilepsia, vol. 52, supplement 2, pp. 10–12, 2011.
[44]
C. Marini, I. E. Scheffer, R. Nabbout et al., “The genetics of Dravet syndrome,” Epilepsia, vol. 52, supplement 2, pp. 24–29, 2011.
[45]
C. Marini, D. Mei, L. Parmeggiani et al., “Protocadherin 19 mutations in girls with infantile-onset epilepsy,” Neurology, vol. 75, no. 7, pp. 646–653, 2010.
[46]
R. Nabbout and C. Chiron, “Stiripentol: an example of antiepileptic drug development in childhood epilepsies,” European Journal of Paediatric Neurology, vol. 16, supplement 1, pp. S13–S17, 2012.
[47]
R. H. Caraballo, R. O. Cersósimo, D. Sakr, A. Cresta, N. Escobal, and N. Fejerman, “Ketogenic diet in patients with dravet syndrome,” Epilepsia, vol. 46, no. 9, pp. 1539–1544, 2005.
[48]
P. R. Camfield, “Definition and natural history of Lennox-Gastaut syndrome,” Epilepsia, vol. 52, supplement 5, pp. 3–9, 2011.
[49]
E. Hancock and H. Cross, “Treatment of Lennox-Gastaut syndrome,” Cochrane Database of Systematic Reviews, no. 3, Article ID CD003277, 2003.
[50]
O. N. Markand, “Lennox-Gastaut syndrome (childhood epileptic encephalopathy),” Journal of Clinical Neurophysiology, vol. 20, no. 6, pp. 426–441, 2003.
[51]
O. N. Markland, “Slow spike wave activity in EEG and associated clinical features: often called “Lennox” or “Lennox Gastaut” syndrome,” Neurology, vol. 27, no. 8, pp. 746–757, 1977.
[52]
A. Arzimanoglou, J. French, W. T. Blume et al., “Lennox-Gastaut syndrome: a consensus approach on diagnosis, assessment, management, and trial methodology,” The Lancet Neurology, vol. 8, no. 1, pp. 82–93, 2009.
[53]
G. D. Montouris, “Rational approach to treatment options for Lennox-Gastaut syndrome,” Epilepsia, vol. 52, supplement 5, pp. 10–20, 2011.
[54]
C. D. Ferrie and A. Patel, “Treatment of Lennox-Gastaut syndrome (LGS),” European Journal of Paediatric Neurology, vol. 13, no. 6, pp. 493–504, 2009.
[55]
M. E. Lemmon, N. N. Terao, Y. Ng, W. Reisig, J. E. Rubenstein, and E. H. Kossoff, “Efficacy of the ketogenic diet in Lennox-Gastaut syndrome: a retrospective review of one institution's experience and summary of the literature,” Developmental Medicine and Child Neurology, vol. 54, no. 5, pp. 464–468, 2012.
[56]
M. Frost, J. Gates, S. L. Helmers et al., “Vagus nerve stimulation in children with refractory seizures associated with Lennox-Gastaut syndrome,” Epilepsia, vol. 42, no. 9, pp. 1148–1152, 2001.
[57]
A. P. Aldenkamp, H. J. M. Majoie, M. W. Berfelo et al., “Long-term effects of 24-month treatment with vagus nerve stimulation on behaviour in children with Lennox-Gastaut syndrome,” Epilepsy and Behavior, vol. 3, no. 5, pp. 475–479, 2002.
[58]
A. L. Velasco, F. Velasco, F. Jiménez et al., “Neuromodulation of the centromedian thalamic nuclei in the treatment of generalized seizures and the improvement of the quality of life in patients with Lennox-Gastaut syndrome,” Epilepsia, vol. 47, no. 7, pp. 1203–1212, 2006.
[59]
W. Landau and F. Kleffner, “Syndrome of acquired aphasia with convulsive disorder in children,” Neurology, vol. 7, no. 8, pp. 523–530, 1957.
[60]
J. Ebersole and T. Pedley, Current Practice of Clinical Electroencephalography, Lippincott Williams and Wilkins, Philadelphia, Pa, USA, 3rd edition, 2003.
[61]
L. Lagae, “Rational treatment options with AEDs and ketogenic diet in Landau-Kleffner syndrome: still waiting after all these years,” Epilepsia, vol. 50, supplement 7, pp. 59–62, 2009.
[62]
W. F. M. Arts, F. K. Aarsen, M. Scheltens-De Boer, and C. E. Catsman-Berrevoets, “Landau-Kleffner syndrome and CSWS syndrome: treatment with intravenous immunoglobulins,” Epilepsia, vol. 50, supplement 7, pp. 55–58, 2009.
[63]
A. G. C. Bergqvist, C. M. Chee, L. M. Lutchka, and A. R. Brooks-Kayal, “Treatment of acquired epileptic aphasia with the ketogenic diet,” Journal of Child Neurology, vol. 14, no. 11, pp. 696–701, 1999.
[64]
J. H. Cross and B. G. R. Neville, “The surgical treatment of Landau-Kleffner syndrome,” Epilepsia, vol. 50, supplement 7, pp. 63–67, 2009.
[65]
J. H. Cross, P. Jayakar, D. Nordli et al., “Proposed criteria for referral and evaluation of children for epilepsy surgery: recommendations of the subcommission for pediatric epilepsy surgery,” Epilepsia, vol. 47, no. 6, pp. 952–959, 2006.
[66]
T. Loddenkemper, I. S. Fernández, and J. M. Peters, “Continuous spike and waves during sleep and electrical status epilepticus in sleep,” Journal of Clinical Neurophysiology, vol. 28, no. 2, pp. 154–164, 2011.
[67]
M. Scheltens-De Boer, “Guidelines for EEG in encephalopathy related to ESES/CSWS in children,” Epilepsia, vol. 50, supplement 7, pp. 13–17, 2009.
[68]
G. Patry, S. Lyagoubi, and C. A. Tassinari, “Subclinical “electrical status epilepticus” induced by sleep in children. A clinical and electroencephalographic study of six cases,” Archives of Neurology, vol. 24, no. 3, pp. 242–252, 1971.
[69]
M. Van Hirtum-Das, E. A. Licht, S. Koh, J. Y. Wu, W. D. Shields, and R. Sankar, “Children with ESES: variability in the syndrome,” Epilepsy Research, vol. 70, supplement 1, pp. S248–S258, 2006.
[70]
M. Buzatu, C. Bulteau, C. Altuzarra, O. Dulac, and P. van Bogaert, “Corticosteroids as treatment of epileptic syndromes with continuous spike-waves during slow-wave sleep,” Epilepsia, vol. 50, supplement 7, pp. 68–72, 2009.
[71]
S. Saltik, D. Uluduz, O. Cokar, V. Demirbilek, and A. Dervent, “A clinical and EEG study on idiopathic partial epilepsies with evolution into ESES spectrum disorders,” Epilepsia, vol. 46, no. 4, pp. 524–533, 2005.
[72]
M. Nikanorova, M. J. Miranda, M. Atkins, and L. Sahlholdt, “Ketogenic diet in the treatment of refractory continuous spikes and waves during slow sleep,” Epilepsia, vol. 50, no. 5, pp. 1127–1131, 2009.
[73]
T. Loddenkemper, G. Cosmo, P. Kotagal et al., “Epilepsy surgery in children with electrical status epilepticus in sleep,” Neurosurgery, vol. 64, no. 2, pp. 328–337, 2009.
[74]
P. Veggiotti, M. C. Pera, F. Teutonico, D. Brazzo, U. Balottin, and C. A. Tassinari, “Therapy of encephalopathy with status epilepticus during sleep (ESES/CSWS syndrome): an update,” Epileptic Disorders, vol. 14, no. 1, pp. 1–11, 2012.
[75]
A. Cherian, N. N. Baheti, R. N. Menon, R. S. Iyer, C. Rathore, and A. Radhakrishnan, “Atonic variant of benign childhood epilepsy with centrotemporal spikes (atonic-BECTS): a distinct electro-clinical syndrome,” Brain and Development, vol. 34, pp. 511–519, 2012.
[76]
H. Shiraishi, K. Haginoya, E. Nakagawa, et al., “Magnetoencephalography localizing spike sources of atypical benign partial epilepsy,” Brain and Development, 2013.
[77]
M. Ishitobi, N. Nakasato, K. Yamamoto, and K. Iinuma, “Opercular to interhemispheric source distribution of benign rolandic spikes of childhood,” NeuroImage, vol. 25, no. 2, pp. 417–423, 2005.
[78]
K. Kikumoto, H. Yoshinaga, M. Oka et al., “EEG and seizure exacerbation induced by carbamazepine in Panayiotopoulos syndrome,” Epileptic Disorders, vol. 8, no. 1, pp. 53–56, 2006.
[79]
S. Grosso, M. Balestri, R. M. Di Bartolo et al., “Oxcarbazepine and atypical evolution of benign idiopathic focal epilepsy of childhood,” European Journal of Neurology, vol. 13, no. 10, pp. 1142–1145, 2006.
[80]
N. Fejerman, “Atypical rolandic epilepsy,” Epilepsia, vol. 50, supplement 7, pp. 9–12, 2009.