全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Clinical-EEG Study of Sleepiness and Psychological Symptoms in Pharmacoresistant Epilepsy Patients Treated with Lacosamide

DOI: 10.1155/2013/593149

Full-Text   Cite this paper   Add to My Lib

Abstract:

Our aim was to evaluate the EEG and clinical modifications induced by the new antiepileptic drug lacosamide (LCM) in patients with epilepsy. We evaluated 10 patients affected by focal pharmacoresistant epilepsy in which LCM (mean 250?mg/day) was added to the preexisting antiepileptic therapy, which was left unmodified. Morning waking EEG recording was performed before (t0) and at 6 months (t1) after starting LCM. At t0 and t1, patients were also administered questionnaires evaluating mood, anxiety, sleep, sleepiness, and fatigue (Beck Depression Inventory; State-Trait Anxiety Inventory Y1 and Y2; Pittsburgh Sleep Quality Index; Epworth Sleepiness Scale; Fatigue Severity Scale). We performed a quantitative analysis of EEG interictal abnormalities and background EEG power spectrum analysis. LCM as an add-on did not significantly affect anxiety, depression, sleepiness, sleep quality, and fatigue scales. Similarly, adding LCM to preexisting therapy did not modify significantly patient EEGs in terms of absolute power, relative power, mean frequency, and interictal abnormalities occurrence. In conclusion, in this small cohort of patients, we confirmed that LCM as an add-on does not affect subjective parameters which play a role, among others, in therapy tolerability, and our clinical impression was further supported by evaluation of EEG spectral analysis. 1. Introduction Epilepsy is one of the most common neurological disorders, affecting up to two percent of the population worldwide. Many patients show recurrent seizures despite treatment with appropriate antiepileptic drugs (AEDs’) [1, 2], and many experience AEDs side effects. In the last decades, new AEDs have been developed with the aim of balancing, as far as possible, significant efficacy with good tolerability. Among them, Lacosamide (LCM) has been recently authorized in Italy and worldwide as a new add-on AED for the treatment of pharmacoresistant focal epilepsy. Side effects of classical AEDs often involve cognitive functions, mood, and behavior to varying degrees, and this is the case also for newer AEDs (see, for instance, [3–5]). Unfortunately, a clear evaluation of these types of side effects in the single patient is often difficult because of the subjectivity of such complaints. This assessment is even harder in patients undergoing AED polytherapy. It has been proposed by several authors the usefulness of a quantitative analysis on EEG in patients undergoing treatment with drugs acting on the CNS (for a review, see for instance, [6]), in this setting, abnormalities of EEG power spectrum have

References

[1]  P. Kwan, A. Arzimanoglou, A. T. Berg, et al., “Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies,” Epilepsia, vol. 51, no. 6, pp. 1069–1077, 2010.
[2]  P. Kwan, S. C. Schachter, and M. J. Brodie, “Current concepts: drug-resistant epilepsy,” The New England Journal of Medicine, vol. 365, no. 10, pp. 919–926, 2011.
[3]  A. B. Ettinger, “Psychotropic effects of antiepileptic drugs,” Neurology, vol. 67, no. 11, pp. 1916–1925, 2006.
[4]  B. Schmitz, “Effects of antiepileptic drugs on mood and behavior,” Epilepsia, vol. 47, no. 2, pp. 28–33, 2006.
[5]  G. Zaccara, P. F. Gangemi, and M. Cincotta, “Central nervous system adverse effects of new antiepileptic drugs. A meta-analysis of placebo-controlled studies,” Seizure, vol. 17, no. 5, pp. 405–421, 2008.
[6]  B. Saletu, P. Anderer, G. M. Saletu-Zyhlarz, O. Arnold, and R. D. Pascual-Marqui, “Classification and evaluation of the pharmacodynamics of psychotropic drugs by single-lead pharmaco-EEG, EEG mapping and tomography (LORETA),” Methods and Findings in Experimental and Clinical Pharmacology, vol. 24, pp. 97–120, 2002.
[7]  J. D. Frost Jr., R. A. Hrachovy, D. G. Glaze, and G. M. Rettig, “Alpha rhythm slowing during initiation of carbamazepine therapy: implications for future cognitive performance,” Journal of Clinical Neurophysiology, vol. 12, no. 1, pp. 57–63, 1995.
[8]  M. C. Salinsky, L. M. Binder, B. S. Oken, D. Storzbach, C. R. Aron, and C. B. Dodrill, “Effects of gabapentin and carbamazepine on the EEG and cognition in healthy volunteers,” Epilepsia, vol. 43, no. 5, pp. 482–490, 2002.
[9]  M. C. Salinsky, B. S. Oken, D. Storzbach, and C. B. Dodrill, “Assessment of CNS effects of antiepileptic drugs by using quantitative EEG measures,” Epilepsia, vol. 44, no. 8, pp. 1042–1050, 2003.
[10]  P. Karzmark, P. Zeifert, and J. Barry, “Measurement of depression in epilepsy,” Epilepsy and Behavior, vol. 2, no. 2, pp. 124–128, 2001.
[11]  D. Kalogjera-Sackellares and J. C. Sackellares, “Improvement in depression associated with partial epilepsy in patients treated with lamotrigine,” Epilepsy and Behavior, vol. 3, no. 6, pp. 510–516, 2002.
[12]  V. K. Kimiskidis, N. I. Triantafyllou, E. Kararizou et al., “Depression and anxiety in epilepsy: the association with demographic and seizure-related variables,” Annals of General Psychiatry, vol. 6, article 28, 2007.
[13]  A. T. Beck, R. A. Steer, and G. K. Brown, Manual for the Beck Depression Inventory, Psychological Corporation, San Antonio, Tex, USA, 1996.
[14]  C. D. Spielberger, R. L. Gorsuch, P. R. Lushene, P. R. Vagg, and G. A. Jacobs, Manual for the State-Trait Anxiety Inventory, Consulting Psychologists Press, Palo Alto, Calif, USA, 1983.
[15]  M. W. Johns, “A new method for measuring daytime sleepiness: the Epworth sleepiness scale,” Sleep, vol. 14, no. 6, pp. 540–545, 1991.
[16]  L. Vignatelli, G. Plazzi, A. Barbato, et al., “GINSEN (Gruppo Italiano Narcolessia Studio Epidemiologico Nazionale), “Italian version of the Epworth sleepiness scale: external validity,” Neurological Sciences, vol. 23, no. 6, pp. 295–300, 2003.
[17]  A. S. Giorelli, G. S. D. M. L. Neves, M. Venturi, I. M. Pontes, A. Valois, and M. D. M. Gomes, “Excessive daytime sleepiness in patients with epilepsy: a subjective evaluation,” Epilepsy and Behavior, vol. 21, no. 4, pp. 449–452, 2011.
[18]  M. W. Johns, “Sleepiness in different situations measured by the Epworth Sleepiness Scale,” Sleep, vol. 17, no. 8, pp. 703–710, 1994.
[19]  D. J. Buysse, C. F. Reynolds III, T. H. Monk, S. R. Berman, and D. J. Kupfer, “The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research,” Psychiatry Research, vol. 28, no. 2, pp. 193–213, 1989.
[20]  A. Romigi, F. Izzi, F. Placidi, et al., “Effects of zonisamide as add-on therapy on sleep-wake cycle in focal epilepsy: a polysomnographic study,” Epilepsy & Behaviour, vol. 26, no. 2, pp. 170–174, 2013.
[21]  L. B. Krupp, N. G. LaRocca, J. Muir-Nash, and A. D. Steinberg, “The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus,” Archives of Neurology, vol. 46, no. 10, pp. 1121–1123, 1989.
[22]  P. O. Valko, C. L. Bassetti, K. E. Bloch, U. Held, and C. R. Baumann, “Validation of the fatigue severity scale in a Swiss cohort,” Sleep, vol. 31, no. 11, pp. 1601–1607, 2008.
[23]  M. R. Littner, C. Kushida, M. Wise et al., “Practice parameters for clinical use of the multiple sleep latency test and the maintenance of wakefulness test,” Sleep, vol. 28, no. 1, pp. 113–121, 2005.
[24]  M. G. Marciani, G. L. Gigli, F. Stefanini et al., “Effect of carbamazepine on EEG background activity and on interictal epileptiform abnormalities in focal epilepsy,” International Journal of Neuroscience, vol. 70, no. 1-2, pp. 107–116, 1993.
[25]  D. Mattia, F. Spanedda, M. A. Bassetti, A. Romigi, F. Placidi, and M. G. Marciani, “Gabapentin as add-on therapy in focal epilepsy: a computerized EEG study,” Clinical Neurophysiology, vol. 111, no. 2, pp. 311–317, 2000.
[26]  G. L. Gigli and J. Gotman, “Effects of seizures and carbamazepine on interictal spiking in amygdala kindled cats,” Epilepsy Research, vol. 8, no. 3, pp. 204–212, 1991.
[27]  F. Placidi, M. Tombini, A. Romigi et al., “Topiramate: effect on EEG interictal abnormalities and background activity in patients affected by focal epilepsy,” Epilepsy Research, vol. 58, no. 1, pp. 43–52, 2004.
[28]  M. G. Marciani, F. Spanedda, M. A. Bassetti et al., “Effect of lamotrigine on EEG paroxysmal abnormalities and background activity: a computerized analysis,” British Journal of Clinical Pharmacology, vol. 42, no. 5, pp. 621–627, 1996.
[29]  W. Klimesch, “EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis,” Brain Research Reviews, vol. 29, no. 2-3, pp. 169–195, 1999.
[30]  E. Basar and M. Schurmann, “Brain functioning: integrative models,” in Brain Function and OsillationsIntegrative Brain Function. Neurophysiology and Cognitive Processes, E. Basar, Ed., vol. 2, pp. 393–406, Springer, Berlin, Germany, 1999.
[31]  M. E. Drake, H. Padamadan, and S. A. Newell, “Interictal quantitative EEG in epilepsy,” Seizure, vol. 7, no. 1, pp. 39–42, 1998.
[32]  W. G. Sannita, L. Gervasio, and P. Zagnoni, “Quantitative EEG effects and plasma concentration of sodium valproate: acute and long-term administration to epileptic patients,” Neuropsychobiology, vol. 22, no. 4, pp. 231–235, 1989.
[33]  B. Clemens, A. Ménes, P. Piros et al., “Quantitative EEG effects of carbamazepine, oxcarbazepine, valproate, lamotrigine, and possible clinical relevance of the findings,” Epilepsy Research, vol. 70, no. 2-3, pp. 190–199, 2006.
[34]  M. Y. Neufeld, E. Kogan, V. Chistik, and A. D. Korczyn, “Comparison of the effects of vigabatrin, lamotrigine, and topiramate on quantitative EEGs in patients with epilepsy,” Clinical Neuropharmacology, vol. 22, no. 2, pp. 80–86, 1999.
[35]  G. K. Herkes, T. D. Lagerlund, F. W. Sharbrough, and M. J. Eadie, “Effects of antiepileptic drug treatment on the background frequency of EEGs in epileptic patients,” Journal of Clinical Neurophysiology, vol. 10, no. 2, pp. 210–216, 1993.
[36]  K. J. Meador, D. W. Loring, O. L. Abney et al., “Effects of carbamazepine and phenytoin on EEG and memory in healthy adults,” Epilepsia, vol. 34, no. 1, pp. 153–157, 1993.
[37]  M. Mula and F. Monaco, “Antiepileptic drugs and psychopathology of epilepsy: an update,” Epileptic Disorders, vol. 11, no. 1, pp. 1–9, 2009.
[38]  F. G. Gilliam and J. M. Santos, “Adverse psychiatric effects of antiepileptic drugs,” Epilepsy Research, vol. 68, no. 1, pp. 67–69, 2006.
[39]  A. R. Giovagnoli and G. Avanzini, “Quality of life and memory performance in patients with temporal lobe epilepsy,” Acta Neurologica Scandinavica, vol. 101, no. 5, pp. 295–300, 2000.
[40]  A. R. Giovagnoli, A. M. Da Silva, A. Federico, and F. Cornelio, “On the personal facets of quality of life in chronic neurological disorders,” Behavioural Neurology, vol. 21, no. 3-4, pp. 155–163, 2009.
[41]  F. Kowacs, M. P. Socal, S. C. Ziomkowski et al., “Symptoms of depression and anxiety, and screening for mental disorders in migrainous patients,” Cephalalgia, vol. 23, no. 2, pp. 79–89, 2003.
[42]  G. Zaccara, P. F. Gangemi, and M. Cincotta, “Central nervous system adverse effects of new antiepileptic drugs. A meta-analysis of placebo-controlled studies,” Seizure, vol. 17, no. 5, pp. 405–421, 2008.
[43]  A. Shahid, J. Shen, and C. M. Shapiro, “Measurements of sleepiness and fatigue,” Journal of Psychosomatic Research, vol. 69, no. 1, pp. 81–89, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133