Pediatric epileptiform encephalopathies are a group of neurologically devastating disorders related to uncontrolled ictal and interictal epileptic activity, with a poor prognosis. Despite the number of pharmacological options for treatment of epilepsy, many of these patients are drug resistant. For these patients with uncontrolled epilepsy, motor and/or neuropsychological deterioration is common. To prevent these secondary consequences, surgery is often considered as either a curative or a palliative option. Magnetic resonance imaging to look for epileptic lesions that may be surgically treated is an essential part of the workup for these patients. Many surgical procedures for the treatment of epileptiform encephalopathies have been reported in the literature. In this paper the evidence for these procedures for the treatment of pediatric epileptiform encephalopathies is reviewed. 1. Introduction Pediatric epileptic encephalopathies are a group of epileptiform disorders in which the epileptic processes themselves are believed to contribute to disturbances in neurologic function [1]. When this term was initially introduced, only a few conditions were included in this group: early myoclonic encephalopathy (EME)/Ohtahara syndrome, West syndrome, myoclonic epilepsy in infancy, Dravet syndrome, myoclonic status in nonprogressive epilepsy (MSNE), epilepsy with myoclonic astatic seizures (MAE), Lennox-Gastaut syndrome (LGS), and epileptic encephalopathy with continuous spike and wave during sleep (CSWS) including Landau-Kleffner syndrome [2]. In 2010 the International League against Epilepsy (ILAE) redefined this condition to include any epilepsy that can cause encephalopathy. In addition, focal or lesional epilepsy, both under-treated and particularly resistant to treatment, can also lead to global disturbance of brain function. Unfortunately many patients with these conditions are considered to have drug-resistant epilepsy (DRE), defined as failure of two tolerated, appropriately chosen antiepileptic medications [3]. Surgery, though uncommonly performed in patients with pediatric encephalopathy, can be a treatment option in carefully selected DRE patients [4, 5]. Surgical options include vagus nerve stimulation (VNS), corpus callosotomy (CC), lesionectomy, lobectomy, hemispherotomy/hemispherectomy, stereotactic thermal ablation, multiple subpial transection (MST), and deep brain stimulation (DBS). 2. Surgical Options in Epilepsy Management Placement of a VNS involves wrapping electrode leads around the left vagus nerve in the neck and connecting the electrode
References
[1]
J. Engel Jr., “ILAE classification of epilepsy syndromes,” Epilepsy Research, vol. 70, 1, pp. S5–S10, 2006.
[2]
J. Engel Jr., “Report of the ILAE classification core group,” Epilepsia, vol. 47, no. 9, pp. 1558–1568, 2006.
[3]
P. Kwan, A. Arzimanoglou, A. T. Berg et al., “Definition of drug resistant epilepsy. Consensus proposal by the ad hoc task force of the ILAE commission on therapeutic strategies,” Epilepsia, vol. 51, pp. 1069–1077, 2010.
[4]
Y. J. Lee, J. S. Lee, H. C. Kang, et al., “Outcomes of epilepsy surgery in childhood-onset epileptic encephalopathy,” Brain and Development. In press.
[5]
A. S. Harvey, J. H. Cross, S. Shinnar, and G. W. Mathern, “Defining the spectrum of international practice in pediatric epilepsy surgery patients,” Epilepsia, vol. 49, no. 1, pp. 146–155, 2008.
[6]
K. Vonck, P. Boon, and D. van Roost, “Anatomical and physiological basis and mechanism of action of neurostimulation for epilepsy,” Acta Neurochirurgica, no. 97, pp. 321–328, 2007.
[7]
E. Ben-Menachem, R. Manon-Espaillat, R. Ristanovic et al., “Vagus nerve stimulation for treatment of partial seizures: 1. A controlled study of effect on seizures,” Epilepsia, vol. 35, no. 3, pp. 616–626, 1994.
[8]
A. Handforth, C. M. DeGiorgio, S. C. Schachter et al., “Vagus nerve stimulation therapy for partial-onset seizures: a randomized active-control trial,” Neurology, vol. 51, no. 1, pp. 48–55, 1998.
[9]
D. J. Englot, E. F. Chang, and K. I. Auguste, “Vagus nerve stimulation for epilepsy: a meta-analysis of efficacy and predictors of response: a review,” Journal of Neurosurgery, vol. 115, no. 6, pp. 1248–1255, 2011.
[10]
N. Zamponi, F. Rychlicki, L. Corpaci, E. Cesaroni, and R. Trignani, “Vagus nerve stimulation (VNS) is effective in treating catastrophic 1 epilepsy in very young children,” Neurosurgical Review, vol. 31, no. 3, pp. 291–297, 2008.
[11]
S. S. Spencer, D. D. Spencer, P. D. Williamson, K. Sass, R. A. Novelly, and R. H. Mattson, “Corpus callosotomy for epilepsy. I. Seizure effects,” Neurology, vol. 38, no. 1, pp. 19–24, 1988.
[12]
K. S. Fuiks, A. R. Wyler, B. P. Hermann, and G. Somes, “Seizure outcome from anterior and complete corpus callosotomy,” Journal of Neurosurgery, vol. 74, no. 4, pp. 573–578, 1991.
[13]
S. S. Spencer, D. D. Spencer, K. Sass, M. Westerveld, A. Katz, and R. Mattson, “Anterior, total, and two-stage corpus callosum section: differential and incremental seizure responses,” Epilepsia, vol. 34, no. 3, pp. 561–567, 1993.
[14]
S. W. Cook, S. T. Nguyen, B. Hu et al., “Cerebral hemispherectomy in pediatric patients with epilepsy: comparison of three techniques by pathological substrate in 115 patients,” Journal of Neurosurgery, vol. 100, no. 2, pp. 125–141, 2004.
[15]
J. Schramm, S. Kuczaty, R. Sassen, C. E. Elger, and M. von Lehe, “Pediatric functional hemispherectomy: outcome in 92 patients,” Acta Neurochirurgica, vol. 154, no. 11, pp. 2017–2028, 2012.
[16]
A. G. Parrent and W. T. Blume, “Stereotactic amygdalohippocampotomy for the treatment of medial temporal lobe epilepsy,” Epilepsia, vol. 40, no. 10, pp. 1408–1416, 1999.
[17]
D. J. Curry, A. Gowda, R. J. McNichols, and A. A. Wilfong, “MR-guided stereotactic laser ablation of epileptogenic foci in children,” Epilepsy and Behavior, vol. 24, pp. 408–414, 2012.
[18]
S. S. Spencer, J. Schramm, A. Wyler et al., “Multiple subpial transection for intractable partial epilepsy: an international meta-analysis,” Epilepsia, vol. 43, no. 2, pp. 141–145, 2002.
[19]
L. R. Moo, S. D. Slotnick, G. Krauss, and J. Hart, “A prospective study of motor recovery following multiple subpial transections,” NeuroReport, vol. 13, no. 5, pp. 665–669, 2002.
[20]
S. Ohtahara and Y. Yamatogi, “Epileptic encephalopathies in early infancy with suppression-burst,” Journal of Clinical Neurophysiology, vol. 20, no. 6, pp. 398–407, 2003.
[21]
A. Djukic, F. A. Lado, S. Shinnar, and S. L. Moshé, “Are early myoclonic encephalopathy (EME) and the Ohtahara syndrome (EIEE) independent of each other?” Epilepsy Research, vol. 70, supplement 1, pp. S68–S76, 2006.
[22]
S. Ohtahara and Y. Yamatogi, “Ohtahara syndrome: with special reference to its developmental aspects for differentiating from early myoclonic encephalopathy,” Epilepsy Research, vol. 70, supplement 1, pp. S58–S67, 2006.
[23]
J. M. Pedespan, H. Loiseau, A. Vital, C. Marchal, D. Fontan, and A. Rougier, “Surgical treatment of an early epileptic encephalopathy with suppression-bursts and focal cortical dysplasia,” Epilepsia, vol. 36, no. 1, pp. 37–40, 1995.
[24]
H. Komaki, K. Sugai, M. Sasaki et al., “Surgical treatment of a case of early infantile epileptic encephalopathy with suppression-bursts associated with focal cortical dysplasia,” Epilepsia, vol. 40, no. 3, pp. 365–369, 1999.
[25]
H. Komaki, K. Sugai, T. Maehara, and H. Shimizu, “Surgical treatment of early-infantile epileptic encephalopathy with suppression-bursts associated with focal cortical dysplasia,” Brain and Development, vol. 23, no. 7, pp. 727–731, 2001.
[26]
S. I. Malik, C. A. Galliani, A. W. Hernandez, et al., “Epilepsy surgery for early infantile epileptic encephalopathy (Ohtahara syndrome),” Journal of Child Neurology, 11 pages, 2012.
[27]
G. Olavarria and J. A. Petronio, “Epilepsy surgery in infancy: a review of four cases,” Pediatric Neurosurgery, vol. 39, no. 1, pp. 44–49, 2003.
[28]
L. Fusco, C. Pachatz, M. Di Capua, and F. Vigevano, “Video/EEG aspects of early-infantile epileptic encephalopathy with suppression-bursts (Ohtahara syndrome),” Brain and Development, vol. 23, no. 7, pp. 708–714, 2001.
[29]
L. Hamiwka, M. Duchowny, I. Alfonso, and E. Liu, “Hemispherectomy in early infantile epileptic encephalopathy,” Journal of Child Neurology, vol. 22, no. 1, pp. 41–44, 2007.
[30]
G. Hmaimess, C. Raftopoulos, H. Kadhim et al., “Impact of early hemispherotomy in a case of Ohtahara syndrome with left parieto-occipital megalencephaly,” Seizure, vol. 14, no. 6, pp. 439–442, 2005.
[31]
B. G. M. Van Engelen, W. O. Renier, C. M. R. Weemaes, P. F. W. Strengers, P. J. H. Bernsen, and S. L. H. Notermans, “High-dose intravenous immunoglobulin treatment in cryptogenic West and Lennox-Gastaut syndrome; an add-on study,” European Journal of Pediatrics, vol. 153, no. 10, pp. 762–769, 1994.
[32]
C. Y. Go, M. T. Mackay, S. K. Weiss, et al., “Evidence-based guideline update: medical treatment of infantile spasms. Report of the Guideline Development Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society,” Neurology, vol. 78, pp. 1974–1980, 2012.
[33]
S.-Y. Liu, N. An, M.-H. Yang et al., “Surgical treatment for epilepsy in 17 children with tuberous sclerosis-related West syndrome,” Epilepsy Research, vol. 101, pp. 36–45, 2012.
[34]
L. Cvitanovic-Sojat, R. Gjergja, Z. Sabol, T. F. Hajnzic, and T. Sojat, “Treatment of West syndrome,” Acta Medica Croatica, vol. 59, pp. 19–29, 2005.
[35]
A. T. Tjiam, S. Stefanko, V. W. D. Schenk, and M. de Vlieger, “Infantile spasms associated with hemihypsarrhythmia and hemimegalencephaly,” Developmental Medicine and Child Neurology, vol. 20, no. 6, pp. 779–789, 1978.
[36]
L. Palm, G. Blennow, and A. Brun, “Infantile spasms and neuronal heterotopias. A report on six cases,” Acta Paediatrica Scandinavica, vol. 75, no. 5, pp. 855–859, 1986.
[37]
V. Ruggieri, R. Caraballo, and N. Fejerman, “Intracranial tumors and West syndrome,” Pediatric Neurology, vol. 5, no. 5, pp. 327–329, 1989.
[38]
U. Kramer, W.-C. Sue, and M. A. Mikati, “Focal features in West syndrome indicating candidacy for surgery,” Pediatric Neurology, vol. 16, no. 3, pp. 213–217, 1997.
[39]
E. Asano, D. C. Chugani, C. Juhásza, O. Muzik, and H. T. Chugani, “Surgical treatment of West syndrome,” Brain and Development, vol. 23, no. 7, pp. 668–676, 2001.
[40]
H. T. Chugani, D. A. Shewmon, W. J. Peacock, W. D. Shields, J. C. Mazziotta, and M. E. Phelps, “Surgical treatment of intractable neonatal-onset seizures: the role of positron emission tomography,” Neurology, vol. 38, no. 8, pp. 1178–1188, 1988.
[41]
H. T. Chugani, W. D. Shields, D. A. Shewmon, D. M. Olson, M. E. Phelps, and W. J. Peacock, “Infantile spasms: I. PET identifies focal cortical dysgenesis in cryptogenic cases for surgical treatment,” Annals of Neurology, vol. 27, no. 4, pp. 406–413, 1990.
[42]
E. Wyllie, Y. G. Comair, P. Kotagal, S. Raja, and P. Ruggieri, “Epilepsy surgery in infants,” Epilepsia, vol. 37, no. 7, pp. 625–637, 1996.
[43]
M.-S. Yum, T.-S. Ko, J. K. Lee, S. Hong, D. S. Kim, and J. Kim, “Surgical treatment for localization-related infantile spasms: excellent long-term outcomes,” Clinical Neurology and Neurosurgery, vol. 113, no. 3, pp. 213–217, 2011.
[44]
J. M. Pinard, O. Delalande, P. Plouin, O. Dulac, and C. G. Lipinski, “Callosotomy in West syndrome suggests a cortical origin of hypsarrhythmia,” Epilepsia, vol. 34, no. 4, pp. 780–787, 1993.
[45]
J. M. Pinard, O. Delalande, C. Chiron et al., “Callosotomy for epilepsy after West syndrome,” Epilepsia, vol. 40, no. 12, pp. 1727–1734, 1999.
[46]
M. Iwasaki, M. Uematsu, Y. Sato, et al., “Complete remission of seizures after corpus callosotomy,” Journal of Neurosurgery, vol. 10, pp. 7–13, 2012.
[47]
R. O. Cersósimo, M. Bartuluchi, S. Fortini, A. Soraru, H. Pomata, and R. H. Caraballo, “Vagus nerve stimulation: effectiveness and tolerability in 64 paediatric patients with refractory epilepsies,” Epileptic Disorders, vol. 13, no. 4, pp. 382–388, 2011.
[48]
R. Nabbout, E. Gennaro, B. B. Dalla et al., “Spectrum of SCN1A mutations in severe myoclonic epilepsy of infancy,” Neurology, vol. 60, no. 12, pp. 1961–1967, 2003.
[49]
A. Bremer, M. I. Lossius, and K. O. Nakken, “Dravet syndrome: considerable delay in making the diagnosis,” Acta Neurologica Scandinavica, vol. 125, no. 5, pp. 359–362, 2012.
[50]
N. Zamponi, C. Passamonti, S. Cappanera, and C. Petrelli, “Clinical course of young patients with Dravet syndrome after vagal nerve stimulation,” European Journal of Paediatric Neurology, vol. 15, no. 1, pp. 8–14, 2011.
[51]
D. M. Andrade, C. Hamani, A. M. Lozano, and R. A. Wennberg, “Dravet syndrome and deep brain stimulation: seizure control after 10 years of treatment,” Epilepsia, vol. 51, no. 7, pp. 1314–1316, 2010.
[52]
B. Dalla Bernardina, E. Fontana, V. Sgro, V. Colamaria, and M. Elia, “Myoclonic epilepsy, (“myoclonic status”) in non-progressive encephalopathies,” in Epileptic Syndromes in Infancy, Childhood and Adolescence, J. Roger, M. Bureau, C. Dravet, F. Dreifuss, A. Perret, and P. Wolf, Eds., pp. 89–96, John Libbey, London, UK, 2nd edition, 1992.
[53]
C. Chiron, P. Plouin, O. Dulac, M. Mayer, and G. Ponsot, “Myoclonic epilepsy with non-progressive encephalopathy,” Neurophysiologie Clinique, vol. 18, no. 6, pp. 513–524, 1988.
[54]
H. Doose, “Myoclonic-astatic epilepsy,” Epilepsy Research, vol. 6, pp. 163–168, 1992.
[55]
S. Kilaru and A. G. C. Bergqvist, “Current treatment of myoclonic astatic epilepsy: clinical experience at the Children's Hospital of Philadelphia,” Epilepsia, vol. 48, no. 9, pp. 1703–1707, 2007.
[56]
H. Oguni, T. Tanaka, K. Hayashi et al., “Treatment and long-term prognosis of myoclonic-astatic epilepsy of early childhood,” Neuropediatrics, vol. 33, no. 3, pp. 122–132, 2002.
[57]
A. P. J. Parker, C. E. Polkey, C. D. Binnie, C. Madigan, C. D. Ferrie, and R. O. Robinson, “Vagal nerve stimulation in epileptic encephalopathies,” Pediatrics, vol. 103, no. 4 I, pp. 778–782, 1999.
[58]
E. Rossignol, A. Lortie, T. Thomas et al., “Vagus nerve stimulation in pediatric epileptic syndromes,” Seizure, vol. 18, no. 1, pp. 34–37, 2009.
[59]
A. P. Aldenkamp, H. J. M. Majoie, M. W. Berfelo et al., “Long-term effects of 24-month treatment with vagus nerve stimulation on behaviour in children with Lennox-Gastaut syndrome,” Epilepsy and Behavior, vol. 3, no. 5, pp. 475–479, 2002.
[60]
H. J. M. Majoie, M. W. Berfelo, A. P. Aldenkamp, W. O. Renier, and A. G. H. Kessels, “Vagus nerve stimulation in patients with catastrophic childhood epilepsy, a 2-year follow-up study,” Seizure, vol. 14, no. 1, pp. 10–18, 2005.
[61]
S. Buoni, R. Zannolli, F. Macucci et al., “Delayed response of seizures with vagus nerve stimulation in Lennox-Gastaut syndrome,” Neurology, vol. 63, no. 8, pp. 1539–1540, 2004.
[62]
J. Aicardi, “Lennox-Gastaut syndrome.,” Epilepsy Research, vol. 17, pp. 43–47, 1994.
[63]
A. Arzimanoglou, J. French, W. T. Blume et al., “Lennox-Gastaut syndrome: a consensus approach on diagnosis, assessment, management, and trial methodology,” The Lancet Neurology, vol. 8, no. 1, pp. 82–93, 2009.
[64]
E. Trevathan, C. C. Murphy, and M. Yeargin-Allsopp, “Prevalence and descriptive epidemiology of Lennox-Gastaut syndrome among Atlanta children,” Epilepsia, vol. 38, no. 12, pp. 1283–1288, 1997.
[65]
A. Beaumanoir and W. Blume, “The Lennox-Gastaut syndrome,” in Epileptic Syndromes in Infancy, Childhood and Adolescence, pp. 125–148, John Libbey, London, UK, 4th edition, 2005.
[66]
Y. J. Lee, H.-C. Kang, J. S. Lee et al., “Resective pediatric epilepsy surgery in Lennox-Gastaut syndrome,” Pediatrics, vol. 125, no. 1, pp. e58–e66, 2010.
[67]
S. J. You, H.-C. Kang, T.-S. Ko et al., “Comparison of corpus callosotomy and vagus nerve stimulation in children with Lennox-Gastaut syndrome,” Brain and Development, vol. 30, no. 3, pp. 195–199, 2008.
[68]
S. L. Helmers, J. W. Wheless, M. Frost et al., “Vagus nerve stimulation therapy in pediatric patients with refractory epilepsy: retrospective study,” Journal of Child Neurology, vol. 16, no. 11, pp. 843–848, 2001.
[69]
G. Lancman, M. Virk, H. Shao, et al., “Vagus nerve stimulation vs. corpus callosotomy in the treatment of Lennox-Gastaut syndrome: a meta-analysis,” Seizure, vol. 22, no. 1, pp. 3–8, 2013.
[70]
J. Lundgren, P. ?mark, G. Blennow, L. G. Str?mblad, and L. Wallstedt, “Vagus nerve stimulation in 16 children with refractory epilepsy,” Epilepsia, vol. 39, no. 8, pp. 809–813, 1998.
[71]
S. Hosain, B. Nikalov, C. Harden, M. Li, R. Fraser, and D. Labar, “Vagus nerve stimulation treatment for Lennox-Gastaut syndrome,” Journal of Child Neurology, vol. 15, no. 8, pp. 509–512, 2000.
[72]
M. Frost, J. Gates, S. L. Helmers et al., “Vagus nerve stimulation in children with refractory seizures associated with Lennox: Gastaut syndrome,” Epilepsia, vol. 42, no. 9, pp. 1148–1152, 2001.
[73]
A. Cukiert, C. M. Cukiert, J. A. Burattini, et al., “Long-term outcome after callosotomy or vagus nerve stimulation in consecutive prospective cohorts of children with Lennox-Gastaut or Lennox-like syndrome and non-specific MRI findings,” Seizure, vol. 22, no. 5, pp. 396–400, 2013.
[74]
L. Jalilian, D. D. D. Limbrick Jr., K. Steger-May, J. I. M. Johnston, A. K. Powers, and M. D. Smyth, “Complete versus anterior two-thirds corpus callosotomy in children: analysis of outcome: clinical article,” Journal of Neurosurgery, vol. 6, no. 3, pp. 257–266, 2010.
[75]
C. Rathore, M. Abraham, R. M. Rao, A. George, P. Sankara Sarma, and K. Radhakrishnan, “Outcome after corpus callosotomy in children with injurious drop attacks and severe mental retardation,” Brain and Development, vol. 29, no. 9, pp. 577–585, 2007.
[76]
A. L. Velasco, F. Velasco, F. Jiménez et al., “Neuromodulation of the centromedian thalamic nuclei in the treatment of generalized seizures and the improvement of the quality of life in patients with Lennox-Gastaut syndrome,” Epilepsia, vol. 47, no. 7, pp. 1203–1212, 2006.
[77]
A. V. Alexopoulos, P. Kotagal, T. Loddenkemper, J. Hammel, and W. E. Bingaman, “Long-term results with vagus nerve stimulation in children with pharmacoresistant epilepsy,” Seizure, vol. 15, no. 7, pp. 491–503, 2006.
[78]
E. M. Thompson, S. E. Wozniak, C. M. Roberts, A. Kao, V. C. Anderson, and N. R. Selden, “Vagus nerve stimulation for partial and generalized epilepsy from infancy to adolescence,” Journal of Neurosurgery Pediatrics, vol. 10, pp. 200–205, 2012.
[79]
T.-F. Yang, T.-T. Wong, S.-Y. Kwan, K.-P. Chang, Y.-C. Lee, and T.-C. Hsu, “Quality of life and life satisfaction in families after a child has undergone corpus callosotomy,” Epilepsia, vol. 37, no. 1, pp. 76–80, 1996.
[80]
J. Fridley, J. G. Thomas, J. C. Navarro, and D. Yoshor, “Brain stimulation for the treatment of epilepsy,” Neurosurgical Focus, vol. 32, no. 3, article E13, 2012.
[81]
P. Giovanardi Rossi, A. Parmeggiani, A. Posar, M. C. Scaduto, S. Chiodo, and G. Vatti, “Landau-Kleffner syndrome (LKS): long-term follow-up and links with electrical status epilepticus during sleep (ESES),” Brain and Development, vol. 21, no. 2, pp. 90–98, 1999.
[82]
E. Liukkonen, E. Kantola-Sorsa, R. Paetau, E. Gaily, M. Peltola, and M.-L. Granstr?m, “Long-term outcome of 32 children with encephalopathy with status epilepticus during sleep, or ESES syndrome,” Epilepsia, vol. 51, no. 10, pp. 2023–2032, 2010.
[83]
I. Cockerell, G. B?lling, and K. O. Nakken, “Landau-Kleffner syndrome in Norway: long-term prognosis and experiences with the health services and educational systems,” Epilepsy and Behavior, vol. 21, no. 2, pp. 153–159, 2011.
[84]
Y. Ohtsuka, A. Tanaka, K. Kobayashi et al., “Childhood-onset epilepsy associated with polymicrogyria,” Brain and Development, vol. 24, no. 8, pp. 758–765, 2002.
[85]
D. Battaglia, P. Veggiotti, D. Lettori et al., “Functional hemispherectomy in children with epilepsy and CSWS due to unilateral early brain injury including thalamus: sudden recovery of CSWS,” Epilepsy Research, vol. 87, no. 2-3, pp. 290–298, 2009.
[86]
M. E. Peltola, E. Liukkonen, M.-L. Granstr?m et al., “The effect of surgery in encephalopathy with electrical status epilepticus during sleep,” Epilepsia, vol. 52, no. 3, pp. 602–609, 2011.
[87]
T. Loddenkemper, G. Cosmo, P. Kotagal et al., “Epilepsy surgery in children with electrical status epilepticus in sleep,” Neurosurgery, vol. 64, no. 2, pp. 328–337, 2009.
[88]
F. Morrell, W. W. Whisler, M. C. Smith et al., “Landau-Kleffner syndrome. Treatment with subpial intracortical transection,” Brain, vol. 118, pp. 1529–1546, 1995.
[89]
K. Irwin, V. Birch, J. Lees, et al., “Multiple subpial transection in Landau-Kleffner syndrome,” Developmental Medicine and Child Neurology, vol. 43, no. 4, pp. 248–252, 2001.
[90]
C. L. Grote, P. Van Slyke, and J.-A. B. Hoeppner, “Language outcome following multiple subpial transection for Landau-Kleffner syndrome,” Brain, vol. 122, pp. 561–566, 1999.
[91]
J. H. Cross and B. G. R. Neville, “The surgical treatment of Landau-Kleffner syndrome,” Epilepsia, vol. 50, supplement 7, pp. 63–67, 2009.
[92]
I. M. S. Sawhney, I. J. A. Robertson, C. E. Polkey, C. D. Binnie, and R. D. C. Elwes, “Multiple subpial transection: a review of 21 cases,” Journal of Neurology Neurosurgery and Psychiatry, vol. 58, no. 3, pp. 344–349, 1995.
[93]
E. Vasconcellos, E. Wyllie, S. Sullivan et al., “Mental retardation in pediatric candidates for epilepsy surgery: the role of early seizure onset,” Epilepsia, vol. 42, no. 2, pp. 268–274, 2001.
[94]
P. R. Huttenlocher and R. J. Hapke, “A follow-up study of intractable seizures in childhood,” Annals of Neurology, vol. 28, no. 5, pp. 699–705, 1990.
[95]
K. M. Aaberg, A. S. Eriksson, J. Ramm-Pettersen, and K. O. Nakken, “Long-term outcome of resective epilepsy surgery in Norwegian children,” Acta Paediatrica, vol. 101, pp. e557–e560, 2012.
[96]
R. A. Krynauw, “Infantile hemiplegia treated by removing one cerebral hemisphere,” Journal of Neurology, Neurosurgery, and Psychiatry, vol. 13, no. 4, pp. 243–267, 1950.
[97]
P. Tinuper, F. Andermann, J.-G. Villemure, T. B. Rasmussen, and L. F. Quesney, “Functional hemispherectomy for treatment of epilepsy associated with hemiplegia: rationale, indications, results, and comparison with callosotomy,” Annals of Neurology, vol. 24, no. 1, pp. 27–34, 1988.
[98]
A. Smith, M. L. Walker, and G. Myers, “Hemispherectomy and diaschisis: rapid improvement in cerebral functions after right hemispherectomy in a six year old child,” Archives of Clinical Neuropsychology, vol. 3, no. 1, pp. 1–8, 1988.
[99]
K. Boshuisen, M. M. J. Van Schooneveld, F. S. S. Leijten et al., “Contralateral MRI abnormalities affect seizure and cognitive outcome after hemispherectomy,” Neurology, vol. 75, no. 18, pp. 1623–1630, 2010.
[100]
C. Kallay, C. Mayor-Dubois, M. Maeder-Ingvar et al., “Reversible acquired epileptic frontal syndrome and CSWS suppression in a child with congenital hemiparesis treated by hemispherotomy,” European Journal of Paediatric Neurology, vol. 13, no. 5, pp. 430–438, 2009.
[101]
S. G. Thomas, R. T. Daniel, A. G. Chacko, M. Thomas, and P. S. S. Russell, “Cognitive changes following surgery in intractable hemispheric and sub-hemispheric pediatric epilepsy,” Child's Nervous System, vol. 26, no. 8, pp. 1067–1073, 2010.
[102]
F. Liégeois, J. H. Cross, C. Polkey, W. Harkness, and F. Vargha-Khadem, “Language after hemispherectomy in childhood: contributions from memory and intelligence,” Neuropsychologia, vol. 46, no. 13, pp. 3101–3107, 2008.
[103]
P. Mariotti, L. Iuvone, M. G. Torrioli, and M. C. Silveri, “Linguistic and non-linguistic abilities in a patient with early left hemispherectomy,” Neuropsychologia, vol. 36, no. 12, pp. 1303–1312, 1998.
[104]
F. Villarejo-Ortega, M. Garcia-Fernandez, C. Fournier-Del Castillo, et al., “Seizure and developmental outcomes after hemispherectomy in children and adolescents with intractable epilepsy. Child's nervous system,” Child's Nervous System, vol. 29, pp. 475–488, 2013.
[105]
D. Lettori, D. Battaglia, A. Sacco et al., “Early hemispherectomy in catastrophic epilepsy. A neuro-cognitive and epileptic long-term follow-up,” Seizure, vol. 17, no. 1, pp. 49–63, 2008.
[106]
F. Guzzetta, D. Battaglia, C. Di Rocco, and M. Caldarelli, “Symptomatic epilepsy in children with poroencephalic cysts secondary to perinatal middle cerebral artery occlusion,” Child's Nervous System, vol. 22, no. 8, pp. 922–930, 2006.
[107]
R. Jonas, R. F. Asarnow, C. LoPresti et al., “Surgery for symptomatic infant-onset epileptic encephalopathy with and without infantile spasms,” Neurology, vol. 64, no. 4, pp. 746–750, 2005.
[108]
R. F. Asarnow, C. LoPresti, D. Guthrie et al., “Developmental outcomes in children receiving resection surgery for medically intractable infantile spasms,” Developmental Medicine and Child Neurology, vol. 39, no. 7, pp. 430–440, 1997.
[109]
H. Freitag and I. Tuxhorn, “Cognitive function in preschool children after epilepsy surgery: rationale for early intervention,” Epilepsia, vol. 46, no. 4, pp. 561–567, 2005.
[110]
A. M. Devlin, J. H. Cross, W. Harkness et al., “Clinical outcomes of hemispherectomy for epilepsy in childhood and adolescence,” Brain, vol. 126, no. 3, pp. 556–566, 2003.
[111]
J. A. González-Martínez, T. Srikijvilaikul, D. Nair, and W. E. Bingaman, “Long-term seizure outcome in reoperation after failure of epilepsy surgery,” Neurosurgery, vol. 60, no. 5, pp. 873–879, 2007.
[112]
M. Van Oijen, H. De Waal, P. C. Van Rijen, A. Jennekens-Schinkel, A. C. van Huffelen, and O. van Nieuwenhuizen, “Resective epilepsy surgery in childhood: the Dutch experience 1992–2002,” European Journal of Paediatric Neurology, vol. 10, no. 3, pp. 114–123, 2006.
[113]
A. A. Arzimanoglou, F. Andermann, J. Aicardi et al., “Sturge-Weber syndrome: indications and results of surgery in 20 patients,” Neurology, vol. 55, no. 10, pp. 1472–1479, 2000.
[114]
D. Battaglia, C. Di Rocco, L. Iuvone et al., “Neuro-cognitive development and epilepsy outcome in children with surgically treated hemimegalencephaly,” Neuropediatrics, vol. 30, no. 6, pp. 307–313, 1999.
[115]
M. Korkman, M.-L. Granstr?m, E. Kantola-Sorsa et al., “Two-year follow-up of intelligence after pediatric epilepsy surgery,” Pediatric Neurology, vol. 33, no. 3, pp. 173–178, 2005.
[116]
M. B. Pulsifer, J. Brandt, C. F. Salorio, E. P. G. Vining, B. S. Carson, and J. M. Freeman, “The cognitive outcome of hemispherectomy in 71 children,” Epilepsia, vol. 45, no. 3, pp. 243–254, 2004.
[117]
E. H. Kossoff, C. Buck, and J. M. Freeman, “Outcomes of 32 hemispherectomies for Sturge-Weber syndrome worldwide,” Neurology, vol. 59, no. 11, pp. 1735–1738, 2002.
[118]
D. Scavarda, P. Major, A. Lortie, C. Mercier, and L. Carmant, “Periinsular hemispherotomy in children with stroke-induced refractory epilepsy: clinical article,” Journal of Neurosurgery, vol. 3, no. 2, pp. 115–120, 2009.
[119]
L. Danelli, G. Cossu, M. Berlingeri, G. Bottini, M. Sberna, and E. Paulesu, “Is a lone right hemisphere enough? Neurolinguistic architecture in a case with a very early left hemispherectomy,” Neurocase, vol. 19, pp. 209–231, 2013.
[120]
A. Smith and O. Sugar, “Development of above normal language and intelligence 21 years after left hemispherectomy,” Neurology, vol. 25, no. 9, pp. 813–818, 1975.
[121]
F. Liégeois, A. T. Morgan, L. H. Stewart, J. Helen Cross, A. P. Vogel, and F. Vargha-Khadem, “Speech and oral motor profile after childhood hemispherectomy,” Brain and Language, vol. 114, no. 2, pp. 126–134, 2010.
[122]
D. Boatman, J. Freeman, E. Vining, et al., “Language recovery after left hemispherectomy in children with late-onset seizures,” Annals of Neurology, vol. 46, pp. 579–586, 1999.
[123]
M. Kennard, “Relation of age to motor impairments in man and subhuman primates,” Archives of Neurology and Psychiatry, vol. 44, pp. 377–397, 1940.
[124]
R. Jonas, S. Nguyen, B. Hu et al., “Cerebral hemispherectomy: hospital course, seizure, developmental, language, and motor outcomes,” Neurology, vol. 62, no. 10, pp. 1712–1721, 2004.
[125]
S. Curtiss, S. de Bode, and G. W. Mathern, “Spoken language outcomes after hemispherectomy: factoring in Etiology,” Brain and Language, vol. 79, no. 3, pp. 379–396, 2001.
[126]
A. E. Telfeian, C. Berqvist, C. Danielak, S. L. Simon, and A.-C. Duhaime, “Recovery of language after left hemispherectomy in a sixteen-year-old girl with late-onset seizures,” Pediatric Neurosurgery, vol. 37, no. 1, pp. 19–21, 2002.
[127]
S. F. Berkovic, A. Arzimanoglou, R. Kuzniecky, A. S. Harvey, A. Palmini, and F. Andermann, “Hypothalamic hamartoma and seizures: a treatable epileptic encephalopathy,” Epilepsia, vol. 44, no. 7, pp. 969–973, 2003.
[128]
J. F. Kerrigan, Y.-T. Ng, S. Chung, and H. L. Rekate, “The hypothalamic hamartoma: a model of subcortical epileptogenesis and encephalopathy,” Seminars in Pediatric Neurology, vol. 12, no. 2, pp. 119–131, 2005.
[129]
P. Kahane, P. Ryvlin, D. Hoffmann, L. Minotti, and A. L. Benabid, “From hypothalamic hamartoma to cortex: what can be learnt from depth recordings and stimulation?” Epileptic Disorders, vol. 5, no. 4, pp. 205–217, 2003.
[130]
G. D. Cascino, F. Andermann, S. F. Berkovic et al., “Gelastic seizures and hypothalamic hamartomas: evaluation of patients undergoing chronic intracranial EEG monitoring and outcome of surgical treatment,” Neurology, vol. 43, no. 4, pp. 747–750, 1993.
[131]
J. V. Rosenfeld, A. S. Harvey, J. Wrennall, M. Zacharin, and S. F. Berkovic, “Transcallosal resection of hypothalamic hamartomas, with control of seizures, in children with gelastic epilepsy,” Neurosurgery, vol. 48, no. 1, pp. 108–118, 2001.
[132]
B. Addas, E. M. S. Sherman, and W. J. Hader, “Surgical management of hypothalamic hamartomas in patients with gelastic epilepsy,” Neurosurgical Focus, vol. 25, no. 3, article E8, 2008.
[133]
J. F. I. Anderson and J. V. Rosenfeld, “Long-term cognitive outcome after transcallosal resection of hypothalamic hamartoma in older adolescents and adults with gelastic seizures,” Epilepsy and Behavior, vol. 18, no. 1-2, pp. 81–87, 2010.
[134]
A. G. Parrent, “Stereotactic radiofrequency ablation for the treatment of gelastic seizures associated with hypothalamic hamartoma: case report,” Journal of Neurosurgery, vol. 91, no. 5, pp. 881–884, 1999.
[135]
A. Schulze-Bonhage, V. Homberg, M. Trippel et al., “Interstitial radiosurgery in the treatment of gelastic epilepsy due to hypothalamic hamartomas,” Neurology, vol. 62, no. 4, pp. 644–647, 2004.
[136]
J. Régis, F. Bartolomei, B. De Toffol et al., “Gamma knife surgery for epilepsy related to hypothalamic hamartomas,” Neurosurgery, vol. 47, no. 6, pp. 1343–1352, 2000.
[137]
H. L. Rekate, I. Feiz-Erfan, Y.-T. Ng, L. F. Gonzalez, and J. F. Kerrigan, “Endoscopic surgery for hypothalamic hamartomas causing medically refractory gelastic epilepsy,” Child's Nervous System, vol. 22, no. 8, pp. 874–880, 2006.
[138]
M. Fohlen, A. Lellouch, and O. Delalande, “Hypothalamic hamartoma with refractory epilepsy: surgical procedures and results in 18 patients,” Epileptic Disorders, vol. 5, no. 4, pp. 267–273, 2003.