Object. It is widely accepted that temporal resective surgery represents an efficacious treatment option for patients with epilepsy of temporal origin. The meticulous knowledge of the potential complications, associated with temporal resective procedures, is of paramount importance. In our current study, we attempt to review the pertinent literature for summating the complications of temporal resective procedures for epilepsy. Method. A PubMed search was performed with the following terms: “behavioral,” “cognitive,” “complication,” “deficit,” “disorder,” “epilepsy,” “hemianopia,” “hemianopsia,” “hemorrhage,” “lobectomy,” “medial,” “memory,” “mesial,” “neurobehavioral,” “neurocognitive,” “neuropsychological,” “psychological,” “psychiatric,” “quadranopia,” “quadranopsia,” “resective,” “side effect,” “surgery,” “temporal,” “temporal lobe,” and “visual field.” Results. There were six pediatric, three mixed-population, and eleven adult surgical series examining the incidence rates of procedure-related complications. The reported mortality rates varied between 0% and 3.5%, although the vast majority of the published series reported no mortality. The cumulative morbidity rates ranged between 3.2% and 88%. Conclusions. Temporal resective surgery for epilepsy is a safe treatment modality. The reported morbidity rates demonstrate a wide variation. Accurate detection and frank reporting of any surgical, neurological, cognitive, and/or psychological complications are of paramount importance for maximizing the safety and improving the patients’ overall outcome. 1. Introduction It is well known that epilepsy constitutes one of the most common neurological clinico-pathological entities, affecting approximately 1% of the general population [1]. It has been estimated, that its prevalence in North America varies between 5 and 10 per 1000 people, and it affects people from all races, ethnicities, and socioeconomic backgrounds [1]. Therefore, epilepsy represents a common clinical condition with significant medical sequences but also serious social and economic ramifications. It has been demonstrated that temporal lobe epilepsy represents by far the most common form of focal epilepsy in adults, while it is one of the most common forms of epilepsy in children [2–7]. Temporal lobe epilepsy usually presents with simple and/or complex partial seizures, although the underlying pathology may be any of a wide spectrum of pathological entities, such as hippocampal sclerosis, low grade glial tumors (dysembryoplastic neuroepithelial tumor, ganglioglioma, and oligodendroglioma),
References
[1]
S. Wiebe, W. T. Blume, J. P. Girvin, and M. Eliasziw, “A randomized, controlled trial of surgery for temporal-lobe epilepsy,” The New England Journal of Medicine, vol. 345, no. 5, pp. 311–318, 2001.
[2]
M. L. Bell, S. Rao, E. L. So et al., “Epilepsy surgery outcomes in temporal lobe epilepsy with a normal MRI,” Epilepsia, vol. 50, no. 9, pp. 2053–2060, 2009.
[3]
W. T. Blume, “Temporal lobe epilepsy surgery in childhood: rationale for greater use,” Canadian Journal of Neurological Sciences, vol. 24, no. 2, pp. 95–98, 1997.
[4]
S. M. Falowski, D. Wallace, A. Kanner, M. Smith, M. Rossi, A. Balabanov, et al., “Tailored temporal lobectomy for medically intractable epilepsy: evaluation of pathology and predictors of outcome,” Neurosurgery, vol. 71, pp. 703–709, 2012.
[5]
H. I. Ipekdal, O. Karadas, E. Erdogan, and Z. Gokcil, “Spectrum of surgical complications of temporal lobe epilepsy surgery: a single. Center study,” Turkish Neurosurgery, vol. 21, no. 2, pp. 147–151, 2011.
[6]
M. A. Lopez-Gonzalez, J. A. Gonzalez-Martinez, L. Jehi, P. Kotagal, A. Warbel, and W. Bingaman, “Epilepsy surgery of the temporal lobe in pediatric population: a retrospective analysis,” Neurosurgery, vol. 70, pp. 684–692, 2012.
[7]
S. Spencer and L. Huh, “Outcomes of epilepsy surgery in adults and children,” The Lancet Neurology, vol. 7, no. 6, pp. 525–537, 2008.
[8]
S. U. Schuele and H. O. Lüders, “Intractable epilepsy: management and therapeutic alternatives,” The Lancet Neurology, vol. 7, no. 6, pp. 514–524, 2008.
[9]
S.-K. Kim, K.-C. Wang, Y.-S. Hwang et al., “Epilepsy surgery in children: outcomes and complications,” Journal of Neurosurgery, vol. 1, no. 4, pp. 277–283, 2008.
[10]
S.-K. Kim, K.-C. Wang, Y.-S. Hwang et al., “Pediatric intractable epilepsy: the role of presurgical evaluation and seizure outcome,” Child's Nervous System, vol. 16, no. 5, pp. 278–286, 2000.
[11]
G. Morrison, M. Duchowny, T. Resnick et al., “Epilepsy surgery in childhood. A report of 79 patients,” Pediatric Neurosurgery, vol. 18, no. 5-6, pp. 291–297, 1992.
[12]
C. Helmstaedter, S. Richter, S. R?ske, F. Oltmanns, J. Schramm, and T.-N. Lehmann, “Differential effects of temporal pole resection with amygdalohippocampectomy versus selective amygdalohippocampectomy on material-specific memory in patients with mesial temporal lobe epilepsy,” Epilepsia, vol. 49, no. 1, pp. 88–97, 2008.
[13]
S. Vadera, V. R. Kshettry, P. Klaas, and W. Bingaman, “Seizure-free and neuropsychological outcomes after temporal lobectomy with amygdalohippocampectomy in pediatric patients with hippocampal sclerosis,” Journal of Neurosurgery, vol. 10, pp. 103–107, 2012.
[14]
J. Engel Jr. and D. A. Shewmon, “Overview: who should be considered a surgical candidate?” in Surgical Treatment of the Epilepsies, J. Engel Jr., Ed., pp. 23–24, Raven Press, New York, NY, USA, 2nd edition, 1993.
[15]
F. Roberti, S. J. Potolicchio, and A. J. Caputy, “Tailored anteromedial lobectomy in the treatment of refractory epilepsy of the temporal lobe: long term surgical outcome and predictive factors,” Clinical Neurology and Neurosurgery, vol. 109, no. 2, pp. 158–165, 2007.
[16]
T. Tanriverdi, A. Ajlan, N. Poulin, and A. Olivier, “Morbidity in epilepsy surgery: an experience based on 2449 epilepsy surgery procedures from a single institution: clinical article,” Journal of Neurosurgery, vol. 110, no. 6, pp. 1111–1123, 2009.
[17]
M. Sindou, M. Guenot, J. Isnard, P. Ryvlin, C. Fischer, and F. Mauguière, “Temporo-mesial epilepsy surgery: outcome and complications in 100 consecutive adult patients,” Acta Neurochirurgica, vol. 148, no. 1, pp. 39–45, 2006.
[18]
G. Erba, K. R. Winston, J. R. Adler, K. Welch, R. Ziegler, and G. W. Hornig, “Temporal lobectomy for complex partial seizures that began in childhood,” Surgical Neurology, vol. 38, no. 6, pp. 424–432, 1992.
[19]
D. B. Sinclair, K. E. Aronyk, T. J. Snyder et al., “Pediatric Epilepsy Surgery at the University of Alberta: 1988–2000,” Pediatric Neurology, vol. 29, no. 4, pp. 302–311, 2003.
[20]
V. C. Terra-Bustamante, L. M. Inuzuca, R. M. F. Fernandes et al., “Temporal lobe epilepsy surgery in children and adolescents: clinical characteristics and post-surgical outcome,” Seizure, vol. 14, no. 4, pp. 274–281, 2005.
[21]
W. J. Hader, J. Tellez-Zenteno, A. Metcalfe, L. Hernandez-Ronquillo, S. Wiebe, C. S. Kwon, et al., “Complications of epilepsy surgery: a systematic review of focal surgical resections and invasive EEG monitoring,” Epilepsia, vol. 54, pp. 840–847, 2013.
[22]
J. H. Lee, Y. S. Hwang, J. J. Shin, T. H. Kim, H. S. Shin, and S. K. Park, “Surgical complications of epilepsy surgery procedures: experience of 179 procedures in a single institute,” Journal of Korean Neurosurgical Society, vol. 44, no. 4, pp. 234–239, 2008.
[23]
V. Salanova, O. Markand, and R. Worth, “Temporal lobe epilepsy surgery: outcome, complications, and late mortality rate in 215 patients,” Epilepsia, vol. 43, no. 2, pp. 170–174, 2002.
[24]
G. Acar, F. Acar, J. Miller, D. C. Spencer, and K. J. Burchiel, “Seizure outcome following transcortical selective amygdalohippocampectomy in mesial temporal lobe epilepsy,” Stereotactic and Functional Neurosurgery, vol. 86, no. 5, pp. 314–319, 2008.
[25]
A. E. Elsharkawy, A. H. Alabbasi, H. Pannek et al., “Long-term outcome after temporal lobe epilepsy surgery in 434 consecutive adult patients: clinical article,” Journal of Neurosurgery, vol. 110, no. 6, pp. 1135–1146, 2009.
[26]
A. Grivas, J. Schramm, T. Kral et al., “Surgical treatment for refractory temporal lobe epilepsy in the elderly: seizure outcome and neuropsychological sequels compared with a younger cohort,” Epilepsia, vol. 47, no. 8, pp. 1364–1372, 2006.
[27]
W. Harkness, “Temporal lobe resections,” Child's Nervous System, vol. 22, no. 8, pp. 936–944, 2006.
[28]
A. C. Heller, R. V. Padilla, and A. N. Mamelak, “Complications of epilepsy surgery in the first 8 years after neurosurgical training,” Surgical Neurology, vol. 71, no. 6, pp. 631–637, 2009.
[29]
A. P. Smith, S. Sani, A. M. Kanner et al., “Medically intractable temporal lobe epilepsy in patients with normal MRI: surgical outcome in twenty-one consecutive patients,” Seizure, vol. 20, no. 6, pp. 475–479, 2011.
[30]
J. Engel Jr., M. P. McDermott, S. Wiebe et al., “Early surgical therapy for drug-resistant temporal lobe epilepsy: a randomized trial,” Journal of the American Medical Association, vol. 307, no. 9, pp. 922–930, 2012.
[31]
J. Oertel, M. R. Gaab, U. Runge, H. W. S. Schroeder, W. Wagner, and J. Piek, “Neuronavigation and complication rate in epilepsy surgery,” Neurosurgical Review, vol. 27, no. 3, pp. 214–217, 2004.
[32]
P. Lackner, F. Koppelstaetter, P. Ploner, M. Sojer, J. Dobesberger, G. Walser, et al., “Cerebral vasospasm following temporal lobe epilepsy surgery,” Neurology, vol. 78, pp. 1215–1220, 2012.
[33]
A. A. Cohen-Gadol, J. A. Leavitt, J. J. Lynch, W. R. Marsh, and G. D. Cascino, “Prospective analysis of diplopia after anterior temporal lobectomy for mesial temporal lobe sclerosis,” Journal of Neurosurgery, vol. 99, no. 3, pp. 496–499, 2003.
[34]
D. M. Jacobson, J. J. Warner, and K. H. Ruggles, “Transient trochlear nerve palsy following anterior temporal lobectomy for epilepsy,” Neurology, vol. 45, no. 8, pp. 1465–1468, 1995.
[35]
K. Mursch, M.-E. Halatsch, B. J. Steinhoff, and J. Behnke-Mursch, “Lumbar subdural haematoma after temporomesial resection in epilepsy patients-report of two cases and review of the literature,” Clinical Neurology and Neurosurgery, vol. 109, no. 5, pp. 442–445, 2007.
[36]
H. Manji and G. T. Plant, “Epilepsy surgery, visual fields, and driving: a study of the visual field criteria for driving in patients after temporal lobe epilepsy surgery with a comparison of Goldmann and Esterman perimetry,” Journal of Neurology Neurosurgery and Psychiatry, vol. 68, no. 1, pp. 80–82, 2000.
[37]
G. P. Winston, P. Daga, J. Stretton et al., “Optic radiation tractography and vision in anterior temporal lobe resection,” Annals of Neurology, vol. 71, no. 3, pp. 334–341, 2012.
[38]
L. de Paola, A. R. Troiano, F. M. B. Germiniani et al., “Cerebellar hemorrhage as a complication of temporal lobectomy for refractory medial temporal epilepsy: report of three cases,” Arquivos de Neuro-Psiquiatria, vol. 62, no. 2 B, pp. 519–522, 2004.
[39]
M. T. Toczek, M. J. Morrell, G. A. Silverberg, and G. M. Lowe, “Cerebellar hemorrhage complicating temporal lobectomy: report of four cases,” Journal of Neurosurgery, vol. 85, no. 4, pp. 718–722, 1996.
[40]
A. Konig, R. Laas, and H.-D. Herrmann, “Cerebellar haemorrhage as a complication after supratentorial craniotomy,” Acta Neurochirurgica, vol. 88, no. 3-4, pp. 104–108, 1987.
[41]
S. Yoshida, Y. Yonekawa, K. Yamashita, I. Ihara, and Y. Morooka, “Cerebellar hemorrhage after supratentorial craniotomy. Report of three cases,” Neurologia Medico-Chirurgica, vol. 30, no. 10, pp. 738–743, 1990.
[42]
G. A. Ojemann and C. B. Dodrill, “Verbal memory deficits after left temporal lobectomy for epilepsy. Mechanism and intraoperative prediction,” Journal of Neurosurgery, vol. 62, no. 1, pp. 101–107, 1985.
[43]
U. Gleissner, C. Helmstaedter, J. Schramm, and C. E. Elger, “Memory outcome after selective amygdalohippocampectomy: a study in 140 patients with temporal lobe epilepsy,” Epilepsia, vol. 43, no. 1, pp. 87–95, 2002.
[44]
D. Blumer, S. Wakhlu, K. Davies, and B. Hermann, “Psychiatric outcome of temporal lobectomy for epilepsy: incidence and treatment of psychiatric complications,” Epilepsia, vol. 39, no. 5, pp. 478–486, 1998.
[45]
C. Christodoulou, M. Koutroumanidis, M. J. Hennessy, R. D. C. Elwes, C. E. Polkey, and B. K. Toone, “Postictal psychosis after temporal lobectomy,” Neurology, vol. 59, no. 9, pp. 1432–1435, 2002.
[46]
R. A. Cleary, P. J. Thompson, Z. Fox, and J. Foong, “Predictors of psychiatric and seizure outcome following temporal lobe epilepsy surgery,” Epilepsia, vol. 53, pp. 1705–1712, 2012.
[47]
I. B. Kulaksizoglu, N. Bebek, B. Baykan et al., “Obsessive-compulsive disorder after epilepsy surgery,” Epilepsy and Behavior, vol. 5, no. 1, pp. 113–118, 2004.
[48]
E. Leinonen, A. Tuunainen, and U. Lepola, “Postoperative psychoses in epileptic patients after temporal lobectomy,” Acta Neurologica Scandinavica, vol. 90, no. 6, pp. 394–399, 1994.
[49]
K. Malmgren, J.-E. Starmark, G. Ekstedt, H. Rosén, and C. Sj?berg-Larsson, “Nonorganic and organic psychiatric disorders in patients after epilepsy surgery,” Epilepsy and Behavior, vol. 3, no. 1, pp. 67–75, 2002.
[50]
A. S. Naylor, B. Rogvi-Hansen, L. Kessing, and C. Kruse-Larsen, “Psychiatric morbidity after surgery for epilepsy: short term follow up of patients undergoing amygdalohippocampectomy,” Journal of Neurology Neurosurgery and Psychiatry, vol. 57, no. 11, pp. 1375–1381, 1994.
[51]
P. Shaw, J. Mellers, M. Henderson, C. Polkey, A. S. David, and B. K. Toone, “Schizophrenia-like psychosis arising de novo following a temporal lobectomy: timing and risk factors,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 75, no. 7, pp. 1003–1008, 2004.
[52]
L. Tebartz Van Elst, D. Baeumer, L. Lemieux et al., “Amygdala pathology in psychosis of epilepsy: a magnetic resonance imaging study in patients with temporal lobe epilepsy,” Brain, vol. 125, no. 1, pp. 140–149, 2002.
[53]
J. M. Wrench, S. J. Wilson, M. F. O'Shea, and D. C. Reutens, “Characterising de novo depression after epilepsy surgery,” Epilepsy Research, vol. 83, no. 1, pp. 81–88, 2009.
[54]
M. Koch-Weser, D. C. Garron, D. W. Gilley et al., “Prevalence of psychologic disorders after surgical treatment of seizures,” Archives of Neurology, vol. 45, no. 12, pp. 1308–1311, 1988.
[55]
D. Nilsson, K. Malmgren, B. Rydenhag, and L. Frisén, “Visual field defects after temporal lobectomy: comparing methods and analysing resection size,” Acta Neurologica Scandinavica, vol. 110, no. 5, pp. 301–307, 2004.
[56]
L. Altshuler, R. Rausch, S. Delrahim, J. Kay, and P. Crandall, “Temporal lobe epilepsy, temporal lobectomy, and major depression,” Journal of Neuropsychiatry and Clinical Neurosciences, vol. 11, no. 4, pp. 436–443, 1999.
[57]
S. Anhoury, R. J. Brown, E. S. Krishnamoorthy, and M. R. Trimble, “Psychiatric outcome after temporal lobectomy: a predictive study,” Epilepsia, vol. 41, no. 12, pp. 1608–1615, 2000.
[58]
E. S. Cankurtaran, B. Ulug, S. Saygi, A. Tiryaki, and N. Akalan, “Psychiatric morbidity, quality of life, and disability in mesial temporal lobe epilepsy patients before and after anterior temporal lobectomy,” Epilepsy and Behavior, vol. 7, no. 1, pp. 116–122, 2005.
[59]
O. Devinsky, W. B. Barr, B. G. Vickrey et al., “Changes in depression and anxiety after resective surgery for epilepsy,” Neurology, vol. 65, no. 11, pp. 1744–1749, 2005.
[60]
Y. Inoue and T. Mihara, “Psychiatric disorders before and after surgery for epilepsy,” Epilepsia, vol. 42, no. 8, pp. 13–18, 2001.
[61]
M. Quigg, D. K. Broshek, S. Heidal-Schiltz, J. W. Maedgen, and E. H. Bertram III, “Depression in intractable partial epilepsy varies by laterality of focus and surgery,” Epilepsia, vol. 44, no. 3, pp. 419–424, 2003.
[62]
H. A. Ring, J. Moriarty, and M. R. Trimble, “A prospective study of the early postsurgical psychiatric associations of epilepsy surgery,” Journal of Neurology Neurosurgery and Psychiatry, vol. 64, no. 5, pp. 601–604, 1998.
[63]
X. Chen, D. Weigel, O. Ganslandt, M. Buchfelder, and C. Nimsky, “Prediction of visual field deficits by diffusion tensor imaging in temporal lobe epilepsy surgery,” NeuroImage, vol. 45, no. 2, pp. 286–297, 2009.
[64]
H. W. R. Powell, G. J. M. Parker, D. C. Alexander et al., “MR tractography predicts visual field defects following temporal lobe resection,” Neurology, vol. 65, no. 4, pp. 596–599, 2005.
[65]
C. Schaller, A. Jung, H. Clusmann, J. Schramm, and B. Meyer, “Rate of vasospasm following the transsylvian versus transcortical approach for selective amygdalohippocampectomy,” Neurological Research, vol. 26, no. 6, pp. 666–670, 2004.