L. Elveback and A. Varma, “Simulation of mathematical models for public health problems,” Public Health Reports, vol. 80, no. 12, pp. 1067–1076, 1965.
[2]
D. Fone, S. Hollinghurst, M. Temple et al., “Systematic review of the use and value of computer simulation modelling in population health and health care delivery,” Journal of Public Health Medicine, vol. 25, no. 4, pp. 325–335, 2003.
[3]
A. Gupta and A. Harding, “Introduction and overview,” in Modelling Our Future, A. Gupta and A. Harding, Eds., vol. 15, pp. 1–40, Elsevier, Amsterdam, The Netherlands, 2007.
[4]
C. M. Rutter, A. M. Zaslavsky, and E. J. Feuer, “Dynamic microsimulation models for health outcomes: a review,” Medical Decision Making, vol. 31, no. 1, pp. 10–18, 2011.
[5]
K. L. Edwards, G. P. Clarke, J. Thomas, and D. Forman, “Internal and external validation of spatial microsimulation models: small area estimates of adult obesity,” Applied Spatial Analysis and Policy, vol. 4, no. 4, pp. 281–300, 2011.
[6]
J. M. Epstein, “Modelling to contain pandemics,” Nature, vol. 460, no. 7256, article 687, 2009.
[7]
J. A. Kopec, P. Finès, D. G. Manuel et al., “Validation of population-based disease simulation models: a review of concepts and methods,” BMC Public Health, vol. 10, article 710, 2010.
[8]
D. A. Savitz, C. Poole, and W. C. Miller, “Reassessing the role of epidemiology in public health,” American Journal of Public Health, vol. 89, no. 8, pp. 1158–1161, 1999.
[9]
J. S. Mandelblatt, K. A. Cronin, S. Bailey et al., “Effects of mammography screening under different screening schedules: model estimates of potential benefits and harms,” Annals of Internal Medicine, vol. 151, no. 10, pp. 738–747, 2009.