全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Maternal Cardiac Arrest: A Practical and Comprehensive Review

DOI: 10.1155/2013/274814

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cardiac arrest during pregnancy is a dedicated chapter in the American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care; however, a robust maternal cardiac arrest knowledge translation strategy and emergency response plan is not usually the focus of institutional emergency preparedness programs. Although maternal cardiac arrest is rare, the emergency department is a high-risk area for receiving pregnant women in either prearrest or full cardiac arrest. It is imperative that institutions review and update emergency response plans for a maternal arrest. This review highlights the most recent science, guidelines, and recommended implementation strategies related to a maternal arrest. The aim of this paper is to increase the understanding of the important physiological differences of, and management strategies for, a maternal cardiac arrest, as well as provide institutions with the most up-to-date literature on which they can build emergency preparedness programs for a maternal arrest. 1. Introduction Managing a maternal cardiac arrest is an extremely challenging and trying task for emergency department (ED) staff as there are two patients, the mother and the fetus. Since out-of-hospital maternal cardiac arrests carry the worst outcomes, emergency medical services (EMS) also play an integral part in the management process [1]. The optimal management of a maternal cardiac arrest requires the participation of several different nonemergency teams, as well as the use of specialized equipment [2, 3], neither of which are part of the usual emergency department code protocols. This would include the obstetrical team, the anesthesia team, and the neonatal team, as well as equipment for a perimortem cesarean section and neonatal resuscitation. Ensuring that the right staff and equipment arrive at the code scene in a timely manner is imperative but often practically difficult. Education and training are essential to managing a maternal cardiac arrest; however, the current skill, knowledge, and implementation of existing guidelines among staff are poor [4–6]. Current ACLS training courses do not routinely include a comprehensive review of maternal resuscitation, and while specialized courses are being developed, they are not yet widely available [7]. Cardiac disease is the number one cause of maternal mortality based on a United Kingdom database that holds the largest population-based data on this specific group [8]. Women are deferring pregnancy to older ages, and more women with complex health problems are choosing to

References

[1]  S. Einav, N. Kaufman, and H. Y. Sela, “Maternal cardiac arrest and perimortem caesarean delivery: evidence or expert-based?” Resuscitation, vol. 83, no. 10, pp. 1191–1200, 2012.
[2]  D. Hui, L. J. Morrison, R. Windrim, et al., “The American Heart Association 2010 guidelines for the management of cardiac arrest in pregnancy: consensus recommendations on implementation strategies,” Journal of Obstetrics and Gynaecology Canada, vol. 33, no. 8, pp. 858–863, 2011.
[3]  T. L. Vanden Hoek, L. J. Morrison, M. Shuster et al., “Part 12: cardiac arrest in special situations: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care,” Circulation, vol. 122, no. 18, supplement 3, pp. S829–S861, 2010.
[4]  S. S. Lipman, K. I. Daniels, B. Carvalho et al., “Deficits in the provision of cardiopulmonary resuscitation during simulated obstetric crises,” American Journal of Obstetrics and Gynecology, vol. 203, no. 2, pp. 179.e1–179.e5, 2010.
[5]  S. E. Cohen, L. C. Andes, and B. Carvalho, “Assessment of knowledge regarding cardiopulmonary resuscitation of pregnant women,” International Journal of Obstetric Anesthesia, vol. 17, no. 1, pp. 20–25, 2008.
[6]  S. Einav, I. Matot, H. Berkenstadt, R. Bromiker, and C. F. Weiniger, “A survey of labour ward clinicians' knowledge of maternal cardiac arrest and resuscitation,” International Journal of Obstetric Anesthesia, vol. 17, no. 3, pp. 238–242, 2008.
[7]  K. Schimmelpfennig and T. J. Stanfill, “Advanced cardiovascular life support for the obstetric population: bridging the gap,” Journal of Perinatal and Neonatal Nursing, vol. 26, no. 2, pp. 136–146, 2012.
[8]  R. Cantwell, T. Clutton-Brock, G. Cooper et al., “Saving Mothers' Lives: reviewing maternal deaths to make motherhood safer: 2006–2008. The Eighth Report of the Confidential Enquiries into Maternal Deaths in the United Kingdom,” British Journal of Obstetrics and Gynaecology, vol. 118, supplement 1, pp. 1–203, 2011.
[9]  E. V. Kuklina and W. M. Callaghan, “Chronic heart disease and severe obstetric morbidity among hospitalisations for pregnancy in the USA: 1995–2006,” British Journal of Obstetrics and Gynaecology, vol. 118, no. 3, pp. 345–352, 2011.
[10]  F. M. Jeejeebhoy, C. M. Zelop, R. Windrim, J. C. A. Carvalho, P. Dorian, and L. J. Morrison, “Management of cardiac arrest in pregnancy: a systematic review,” Resuscitation, vol. 82, no. 7, pp. 801–809, 2011.
[11]  J. Nanson, D. Elcock, M. Williams, and C. D. Deakin, “Do physiological changes in pregnancy change defibrillation energy requirements?” British Journal of Anaesthesia, vol. 87, no. 2, pp. 237–239, 2001.
[12]  A. P. L. Goodwin and A. J. Pearce, “The human wedge. A manoeuvre to relieve aortocaval compression during resuscitation in late pregnancy,” Anaesthesia, vol. 47, no. 5, pp. 433–434, 1992.
[13]  G. A. D. Rees and B. A. Willis, “Resuscitation in late pregnancy,” Anaesthesia, vol. 43, no. 5, pp. 347–349, 1988.
[14]  A. Dijkman, C. M. A. Huisman, M. Smit et al., “Cardiac arrest in pregnancy: increasing use of perimortem caesarean section due to emergency skills training?” British Journal of Obstetrics and Gynaecology, vol. 117, no. 3, pp. 282–287, 2010.
[15]  V. Katz, K. Balderston, M. Defreest, M. Nageotte, and J. Parer, “Perimortem cesarean delivery: were our assumptions correct?” American Journal of Obstetrics and Gynecology, vol. 192, no. 6, pp. 1916–1921, 2005.
[16]  F. Jeejeebhoy and C. Zelop, “In pregnant patients with cardiac arrest (prehospital or in-hospital) (P), do any specific interventions (I) as opposed to standard care (according to treatment algorithm) (C), improve outcome (O) (eg. ROSC, survival)?” 2010, http://circ.ahajournals.org/site/C2010/ALS-SC-065.pdf.
[17]  L. J. Morrison, C. D. Deakin, P. T. Morley et al., “Part 8: advanced life support: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations,” Circulation, vol. 122, no. 16, supplement 2, pp. S345–S421, 2010.
[18]  “Appendix: Evidence-Based Worksheets: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations and 2010 American Heart Association and American Red Cross International Consensus on First Aid Sceince with Treatment Recommendations,” Circulation, vol. 122, pp. S606–S638, 2010.
[19]  J. M. Mhyre and D. Healy, “The unanticipated difficult intubation in obstetrics,” Anesthesia and Analgesia, vol. 112, no. 3, pp. 648–652, 2011.
[20]  N. J. McDonnell, M. J. Paech, O. M. Clavisi, and K. L. Scott, “Difficult and failed intubation in obstetric anaesthesia: an observational study of airway management and complications associated with general anaesthesia for caesarean section,” International Journal of Obstetric Anesthesia, vol. 17, no. 4, pp. 292–297, 2008.
[21]  E. A. Djabatey and P. M. Barclay, “Difficult and failed intubation in 3430 obstetric general anaesthetics,” Anaesthesia, vol. 64, no. 11, pp. 1168–1171, 2009.
[22]  R. Elkus and J. Popovich Jr., “Respiratory physiology in pregnancy,” Clinics in Chest Medicine, vol. 13, no. 4, pp. 555–565, 1992.
[23]  G. M. Vasdev, B. A. Harrison, M. T. Keegan, and C. M. Burkle, “Management of the difficult and failed airway in obstetric anesthesia,” Journal of Anesthesia, vol. 22, no. 1, pp. 38–48, 2008.
[24]  B. Izci, M. Vennelle, W. A. Liston, K. C. Dundas, A. A. Calder, and N. J. Douglas, “Sleep-disordered breathing and upper airway size in pregnancy and post-partum,” European Respiratory Journal, vol. 27, no. 2, pp. 321–327, 2006.
[25]  J. K. Cheun and K. T. Choi, “Arterial oxygen desaturation rate following obstructive apnea in parturients,” Journal of Korean medical science, vol. 7, no. 1, pp. 6–10, 1992.
[26]  G. J. Andersen, G. B. James, N. P. Mathers, E. L. Smith, and J. Walker, “The maternal oxygen tension and acid-base status during pregnancy,” The Journal of Obstetrics and Gynaecology of the British Commonwealth, vol. 76, no. 1, pp. 16–19, 1969.
[27]  M. L. Pernoll, J. Metcalfe, T. L. Schlenker, J. E. Welch, and J. A. Matsumoto, “Oxygen consumption at rest and during exercise in pregnancy,” Respiration Physiology, vol. 25, no. 3, pp. 285–293, 1975.
[28]  G. R. Baldwin, D. S. Moorthi, J. A. Whelton, and K. F. MacDonnell, “New lung functions and pregnancy,” American Journal of Obstetrics and Gynecology, vol. 127, no. 3, pp. 235–239, 1977.
[29]  G. D. V. Hankins, C. J. Harvey, S. L. Clark, E. M. Uckan, and J. W. Van Hook, “The effects of maternal position and cardiac output on intrapulmonary shunt in normal third-trimester pregnancy,” Obstetrics and Gynecology, vol. 88, no. 3, pp. 327–330, 1996.
[30]  G. Levinson, S. M. Shnider, A. A. DeLorimier, and J. L. Steffenson, “Effects of maternal hyperventilation on uterine blood flow and fetal oxygenation and acid base status,” Anesthesiology, vol. 40, no. 4, pp. 340–347, 1974.
[31]  U. Ulmsten and G. Sundstrom, “Esophageal manometry in pregnant and nonpregnant women,” American Journal of Obstetrics and Gynecology, vol. 132, no. 3, pp. 260–264, 1978.
[32]  R. S. Fisher, G. S. Roberts, C. J. Grabowski, and S. Cohen, “Altered lower esophageal sphincter function during early pregnancy,” Gastroenterology, vol. 74, no. 6, pp. 1233–1237, 1978.
[33]  W. J. Dodds, J. Dent, and W. J. Hogan, “Pregnancy and the lower esophageal sphincter,” Gastroenterology, vol. 74, no. 6, pp. 1334–1336, 1978.
[34]  R. W. Neumar, C. W. Otto, M. S. Link, et al., “Part 8: adult advanced cardiovascular life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care,” Circulation, vol. 122, no. 18, supplement 3, pp. S729–S767, 2010.
[35]  S. Boet, K. Duttchen, J. Chan et al., “Cricoid pressure provides incomplete esophageal occlusion associated with lateral deviation: a magnetic resonance imaging study,” Journal of Emergency Medicine, vol. 42, no. 5, pp. 606–611, 2012.
[36]  K. Ueland, M. J. Novy, E. N. Peterson, and J. Metcalfe, “Maternal cardiovascular dynamics. IV. The influence of gestational age on the maternal cardiovascular response to posture and exercise,” American Journal of Obstetrics and Gynecology, vol. 104, no. 6, pp. 856–864, 1969.
[37]  C. E. McLennan, “Antecubital and femoral venous pressure in normal and toxemic pregnancy,” American Journal of Obstetrics and Gynecology, vol. 45, no. 4, pp. 568–591, 1943.
[38]  M. G. Kerr, “The mechanical effects of the Gravid Uterus in late pregnancy,” The Journal of Obstetrics and Gynaecology of the British Commonwealth, vol. 72, pp. 513–529, 1965.
[39]  C. Vaillancourt, S. Everson-Stewart, J. Christenson et al., “The impact of increased chest compression fraction on return of spontaneous circulation for out-of-hospital cardiac arrest patients not in ventricular fibrillation,” Resuscitation, vol. 82, no. 12, pp. 1501–1507, 2011.
[40]  J. Christenson, D. Andrusiek, S. Everson-Stewart et al., “Chest compression fraction determines survival in patients with out-of-hospital ventricular fibrillation,” Circulation, vol. 120, no. 13, pp. 1241–1247, 2009.
[41]  K. B. Kern, R. W. Hilwig, R. A. Berg, A. B. Sanders, and G. A. Ewy, “Importance of continuous chest compressions during cardiopulmonary resuscitation: improved outcome during a simulated single lay-rescuer scenario,” Circulation, vol. 105, no. 5, pp. 645–649, 2002.
[42]  R. J. Cardosi and K. B. Porter, “Cesarean delivery of twins during maternal cardiopulmonary arrest,” Obstetrics and Gynecology, vol. 92, no. 4, pp. 695–697, 1998.
[43]  H. Finegold, A. Darwich, R. Romeo, M. Vallejo, and S. Ramanathan, “Successful resuscitation after maternal cardiac arrest by immediate cesarean section in the labor room,” Anesthesiology, vol. 96, no. 5, p. 1278, 2002.
[44]  S. Oates, G. L. Williams, and G. A. D. Rees, “Cardiopulmonary resuscitation in late pregnancy,” British Medical Journal, vol. 297, no. 6645, pp. 404–405, 1988.
[45]  J. Parker, N. Balis, S. Chester, and D. Adey, “Cardiopulmonary arrest in pregnancy: successful resuscitation of mother and infant following immediate Caesarean section in labour ward,” Australian and New Zealand Journal of Obstetrics and Gynaecology, vol. 36, no. 2, pp. 207–210, 1996.
[46]  S. Lipman, K. Daniels, S. E. Cohen, and B. Carvalho, “Labor room setting compared with the operating room for simulated perimortem cesarean delivery: a randomized controlled trial,” Obstetrics and Gynecology, vol. 118, no. 5, pp. 1090–1094, 2011.
[47]  H. E. Ladner, B. Danielsen, and W. M. Gilbert, “Acute myocardial infarction in pregnancy and the puerperium: a population-based study,” Obstetrics and Gynecology, vol. 105, no. 3, pp. 480–484, 2005.
[48]  C.-L. Poh and C.-H. Lee, “Acute myocardial infarction in pregnant women,” Annals of the Academy of Medicine Singapore, vol. 39, no. 3, pp. 247–253, 2010.
[49]  A. H. James, M. G. Jamison, M. S. Biswas, L. R. Brancazio, G. K. Swamy, and E. R. Myers, “Acute myocardial infarction in pregnancy: a United States population-based study,” Circulation, vol. 113, no. 12, pp. 1564–1571, 2006.
[50]  P. T. Munro, “Management of eclampsia in the accident and emergency department,” Journal of Accident and Emergency Medicine, vol. 17, no. 1, pp. 7–11, 2000.
[51]  N. J. McDonnell, “Cardiopulmonary arrest in pregnancy: two case reports of successful outcomes in association with perimortem Caesarean delivery,” British Journal of Anaesthesia, vol. 103, no. 3, pp. 406–409, 2009.
[52]  S. N. Stehr, I. Liebich, G. Kamin, T. Koch, and R. J. Litz, “Closing the gap between decision and delivery-Amniotic fluid embolism with severe cardiopulmonary and haemostatic complications with a good outcome,” Resuscitation, vol. 74, no. 2, pp. 377–381, 2007.
[53]  R. D. Stanten, L. I. G. Iverson, T. M. Daugharty, S. M. Lovett, C. Terry, and E. Blumenstock, “Amniotic fluid embolism causing catastrophic pulmonary vasoconstriction: diagnosis by transesophageal echocardiogram and treatment by cardiopulmonary bypass,” Obstetrics and Gynecology, vol. 102, no. 3, pp. 496–498, 2003.
[54]  D. Howes, R. Green, S. Gray, et al., “Canadian Association of Emergency Physicians Hypothermia Post cardiac Arrest Position Statement Subcommittee,” 2005.
[55]  A. Chauhan, H. Musunuru, M. Donnino, M. T. McCurdy, V. Chauhan, and M. Walsh, “The use of therapeutic hypothermia after cardiac arrest in a pregnant patient,” Annals of Emergency Medicine, vol. 60, no. 6, pp. 786–789, 2012.
[56]  J. C. Rittenberger, E. Kelly, D. Jang, K. Greer, and A. Heffner, “Successful outcome utilizing hypothermia after cardiac arrest in pregnancy: a case report,” Critical Care Medicine, vol. 36, no. 4, pp. 1354–1356, 2008.
[57]  E. F. Wible, J. S. Kass, and G. A. Lopez, “A report of fetal demise during therapeutic hypothermia after cardiac arrest,” Neurocritical Care, vol. 13, no. 2, pp. 239–242, 2010.
[58]  “Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest,” The New England Journal of Medicine, vol. 346, no. 8, pp. 549–556, 2002.
[59]  S. A. Bernard, T. W. Gray, M. D. Buist et al., “Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia,” New England Journal of Medicine, vol. 346, no. 8, pp. 557–563, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133