The objective of this paper is to present the technical efficiency of individual companies and their respective groups of Bangladesh stock market (i.e., Dhaka Stock Exchange, DSE) by using two risk factors (co-skewness and co-kurtosis) as the additional input variables in the Stochastic Frontier Analysis (SFA). The co-skewness and co-kurtosis are derived from the Higher Moment Capital Asset Pricing Model (H-CAPM). To investigate the contribution of these two factors, two types of technical efficiency are derived: (1) technical efficiency with considering co-skewness and co-kurtosis (WSK) and (2) technical efficiency without considering co-skewness and co-kurtosis (WOSK). By comparing these two types of technical efficiency, it is noticed that the technical efficiency of WSK is higher than the technical efficiency of WOSK for the individual companies and their respective groups. As per available literature in the context Bangladesh stock market, no study has been conducted thus far to measure technical efficiency of companies and their respective groups by using the risk factors which are derived from the H-CAPM. In this research, the link between H-CAPM and SFA is established for measuring technical efficiency and it is believed that the findings of this study may be applied to other emerging stock markets. 1. Introduction In the finance literature, CAPM is one of the most important developments which predicts that the expected return on an asset is linearly related to systemic risk. But, because of the large number of empirical evidence against the CAPM, the financial researchers started to search for a substitute model to describe the risk-return relationship of risky assets. This searching had led the researchers to the extension of the CAPM. The higher moment CAPM was initially proposed by Rubinstein [1] and sequentially developed by Kraus and Litzenberger [2], Fang and Lai [3], Hwang and Satchell [4], and Harvey and Siddique [5]. Rubinstein [1] noted that when the market returns are not normal (but skewed or leptokurtic), the standard CAPM is not enough to price equity returns. So, he recommended for the addition of higher moments. Kraus and Litzenberger [2] extended the Sharpe-Lintner CAPM model by introducing the third moment “skewness” and examined the effect of skewness in return distributions. They found that the systematic skewness (co-skewness) is capable of explaining the behavior of asset returns which was not fully explained by the traditional CAPM. Fang and Lai [3] showed that in the presence of skewness and kurtosis in asset return
References
[1]
M. Rubinstein, “The fundamental theorem of parameter preference security valuation,” Journal of Financial and Quantitative Analysis, vol. 8, no. 1, pp. 61–69, 1973.
[2]
A. Kraus and R. Litzenberger, “Skewness preference and the valuation of risky assets,” Journal of Finance, vol. 21, no. 4, pp. 1085–1094, 1976.
[3]
H. Fang and T. Y. Lai, “Co-Kurtosis and capital asset pricing,” The Financial Review, vol. 32, no. 2, pp. 293–307, 1997.
[4]
S. Hwang and S. E. Satchell, “Modelling emerging market risk premia using higher moments,” International Journal of Finance and Economics, vol. 4, no. 4, pp. 271–296, 1999.
[5]
C. R. Harvey and A. Siddique, “Conditional skewness in asset pricing tests,” The Journal of Finance, vol. 55, no. 3, pp. 1263–1295, 2000.
[6]
M. K. Brunnermeier, C. Gollier, and J. A. Parker, “Optimal beliefs, asset prices, and the preference for skewed returns,” Tech. Rep. w12940, National Bureau of Economic Research, 2007.
[7]
A. Kostakis, K. Muhammad, and A. Siganos, “Higher co-moments and asset pricing on London Stock Exchange,” Journal of Banking and Finance, vol. 36, no. 3, pp. 913–922, 2012.
[8]
B. Young Chang, P. Christoffersen, and K. Jacobs, “Market skewness risk and the cross section of stock returns,” Journal of Financial Economics, vol. 107, no. 1, pp. 46–68, 2012.
[9]
B. Carmichael and A. Coen, “Asset pricing with skewed-normal return,” Finance Research Letters, vol. 10, no. 2, pp. 50–57, 2013.
[10]
M. M. Alam, K. A. Alam, and M. G. S. Uddin, “Market depth and risk return analysis of dhaka stock exchange: an empirical test of market efficiency,” ASA University Review, vol. 1, pp. 93–101, 2008.
[11]
M. H. Ali, S. Islam, and M. M. Chowdhury, “Test of CAPM in emerging stock markets: a study on Dhaka stock exchange. The Cost and Management,” 2010.
[12]
A. T. Mollik and Md. K. Bepari, “Instability of stock beta in Dhaka Stock Exchange, Bangladesh,” Managerial Finance, vol. 36, no. 10, pp. 886–902, 2010.
[13]
A. N. Berger and D. B. Humphrey, “Efficiency of financial institutions: international survey and directions for future research,” European Journal of Operational Research, vol. 98, no. 2, pp. 175–212, 1997.
[14]
P. W. Bauer, A. N. Berger, G. D. Ferrier, and D. B. Humphrey, “Consistency conditions for regulatory analysis of financial institutions: a comparison of frontier efficiency methods,” Journal of Economics and Business, vol. 50, no. 2, pp. 85–114, 1998.
[15]
G. D. Ferrier and C. A. K. Lovell, “Measuring cost efficiency in banking. Econometric and linear programming evidence,” Journal of Econometrics, vol. 46, no. 1-2, pp. 229–245, 1990.
[16]
A. Resti, “Evaluating the cost-efficiency of the Italian banking system: what can be learned from the joint application of parametric and non-parametric techniques,” Journal of Banking and Finance, vol. 21, no. 2, pp. 221–250, 1997.
[17]
Y. Altunbas, L. Evans, and P. Molyneux, “Bank ownership and efficiency,” Journal of Money, Credit and Banking, vol. 33, no. 4, pp. 926–954, 2001.
[18]
L. Weill, “Measuring cost efficiency in European banking: a comparison of frontier techniques,” Journal of Productivity Analysis, vol. 21, no. 2, pp. 133–152, 2004.
[19]
F. Fecher, D. Kessler, S. Perelman, and P. Pestieau, “Productive performance of the French insurance industry,” Journal of Productivity Analysis, vol. 4, no. 1-2, pp. 77–93, 1993.
[20]
J. D. Cummins and H. Zi, “Comparison of frontier efficiency methods: an application to the U.S. life insurance industry,” Journal of Productivity Analysis, vol. 10, no. 2, pp. 131–152, 1998.
[21]
S. Kasman and E. Turgutlu, “A Comparison of Chance-constrained DEA and Stochastic Frontier Analysis: an Application to the Turkish Life Insurance Industry,” Working Papers, 2007.
[22]
D. Aigner, C. A. K. Lovell, and P. Schmidt, “Formulation and estimation of stochastic frontier production function models,” Journal of Econometrics, vol. 6, no. 1, pp. 21–37, 1977.
[23]
J. E. Kirkley, D. Squires, and I. E. Strand, “Assessing technical efficiency in commercial fisheries: the mid-Atlantic sea scallop fishery,” American Journal of Agricultural Economics, vol. 77, no. 3, pp. 686–697, 1995.
[24]
A. M. Yuengert, “The measurement of efficiency in life insurance: estimates of a mixed normal-gamma error model,” Journal of Banking and Finance, vol. 17, no. 2-3, pp. 483–496, 1993.
[25]
L. J. Mester, “A study of bank efficiency taking into account risk-preferences,” Journal of Banking and Finance, vol. 20, no. 6, pp. 1025–1045, 1996.
[26]
L. Hjalmarsson, S. C. Kumbhakar, and A. Heshmati, “DEA, DFA and SFA: a comparison,” Journal of Productivity Analysis, vol. 7, no. 2-3, pp. 303–327, 1996.
[27]
A. T. Mollik and Md. K. Bepari, “Risk-return trade-off in dhaka stock exchange, Bangladesh: an emerging market evidence,” 2011.
[28]
M. G. S. Uddin and A. K. M. Nabiul Khoda, “An Empirical examination of random walk hypothesis for Dhaka stock exchange: evidence from pharmaceutical sector of Bangladesh,” International Research Journal of Finance and Economics, vol. 33, pp. 87–100, 2009.
[29]
D. C.-H. Hung, M. Shackleton, and X. Xu, “CAPM, higher co-moment and factor models of UK stock returns,” Journal of Business Finance and Accounting, vol. 31, no. 1-2, pp. 87–112, 2004.
[30]
E. F. Fama and J. D. MacBeth, “Risk, return, and equilibrium: empirical tests,” Journal of Political Economy, vol. 81, no. 3, pp. 607–636, 1973.
[31]
W. Meeusen and J. van Den Broeck, “Efficiency estimation from Cobb-Douglas production functions with composed error,” International Economic Review, vol. 18, no. 2, pp. 435–444, 1977.
[32]
G. E. Battese and T. J. Coelli, “Frontier production functions, technical efficiency and panel data: with application to paddy farmers in India,” Journal of Productivity Analysis, vol. 3, no. 1-2, pp. 153–169, 1992.
[33]
T. J. Coelli, D. S. Prasada Rao, and G. E. Battese, An Introduction to Efficiency and Productivity Analysis, Kluwer Academic Publishers, London, UK, 1998.
[34]
W. H. Greene, “A Gamma-distributed stochastic frontier model,” Journal of Econometrics, vol. 46, no. 1-2, pp. 141–163, 1990.
[35]
P. W. Bauer, “Recent developments in the econometric estimation of frontiers,” Journal of Econometrics, vol. 46, no. 1-2, pp. 39–56, 1990.
[36]
G. E. Battese and T. J. Coelli, “Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data,” Journal of Econometrics, vol. 38, no. 3, pp. 387–399, 1988.
[37]
T. J. Coelli, “A Guide to FRONTIER version 4.1: a computer program for stochastic frontier production and cost function estimation,” CEPA Working Papers 7/96, School of Economics, University of New England, Armidale, Australia, 1996.
[38]
N. H. N. Mustapha, “Technical efficiency for rubber smallholders under RISDA's supervisory system using stochastic frontier analysis,” Journal of Sustainability Science and Management, vol. 6, no. 1, pp. 156–168, 2011.
[39]
A. Wadud and B. White, “Farm household efficiency in Bangladesh: a comparison of stochastic frontier and DEA methods,” Applied Economics, vol. 32, no. 13, pp. 1665–1673, 2000.
[40]
M. Ahmad and B. E. Bravo-Ureta, “Technical efficiency measures for dairy farms using panel data: a comparison of alternative model specifications,” Journal of Productivity Analysis, vol. 7, no. 4, pp. 399–415, 1996.
[41]
R. Villano and E. Fleming, “Technical inefficiency and production risk in rice farming: evidence from Central Luzon Philippines,” Asian Economic Journal, vol. 20, no. 1, pp. 29–46, 2006.
[42]
D. A. Kodde and A. C. Palm, “Wald criteria for jointly testing equality and inequality restrictions,” Econometrica, vol. 54, pp. 1243–1248, 1986.
[43]
E. Taymaz and G. Saat?i, “Technical change and efficiency in Turkish manufacturing industries,” Journal of Productivity Analysis, vol. 8, no. 4, pp. 461–475, 1997.
[44]
P. E. Perera, Behavioral characteristics of the stock market in Sri Lanka: evidence from some test of return predictability at the Colombo Stock Exchange [Ph.D. thesis], Temple University, Philadelphia, Pa, USA, 1995.
[45]
S. Claessens, S. Dasgupta, and J. D. Glen, “The cross-section of stock returns: evidence from the emerging markets,” World Bank Publications 1505, 1995.
[46]
M. Z. Hasan, A. A. Kamil, A. Mustafa, and M. A. Baten, “Measuring Dhaka Stock exchange market efficiency: a stochastic frontier analysis,” African Journal of Business Management, vol. 5, no. 22, pp. 8891–8901, 2011.
[47]
M. M. Islam and J. L. Gomes, “The day-of-the-week effects in less-developed countries’ markets: the case of Bangladesh,” International Advances in Economic Research, vol. 5, no. 3, p. 397, 1999.