全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The MTHFR 677T Allele May Influence the Severity and Biochemical Risk Factors of Alzheimer’s Disease in an Egyptian Population

DOI: 10.1155/2013/524106

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective. We evaluated whether the methylenetetrahydrofolate reductase (MTHFR) 677C>T marker influences the risk and severity of Alzheimer's disease (AD) and whether AD is associated with homocysteine, vitamin B12, and cholesterol levels in Egypt. Methods. Forty-three Alzheimer's cases and 32 non-AD controls were genotyped for the 677C>T polymorphism. Clinical characteristics and levels of homocysteine, vitamin B12, and cholesterol were assessed. Results. No significant differences in the frequencies of the MTHFR alleles or genotypes between AD cases and controls ( ) were identified. The 677T mutant allele was significantly overrepresented in AD cases compared to controls ( ; ). The 677T/T frequency was three times higher in AD patients than in controls, which could increase plasma homocysteine levels. Severe cases of AD were the most frequent in patients with the T/T genotype (11.6%). The effect of the MTHFR polymorphism on the risk of AD may be independent of homocysteine, vitamin B12, or even cholesterol levels. Conclusions. The MTHFR 677C>T polymorphism—especially the presence of one copy of the T allele—appears to confer a potential risk for the development of AD. The T/T genotype may contribute to hypercysteinemia as a sensitive marker. 1. Introduction Alzheimer’s disease (AD, MIM 104300) is a major cause of disability in the elderly population. It is the most common form of dementia, affecting 1 in 8 individuals older than 60 years of age [1]. Most AD cases are late in onset and are probably influenced by both genetic and environmental factors. Clinically, AD generally begins with subtle short-term memory problems and then progresses to difficulties in memory, language, and orientation. In the late stage of AD, ventricular enlargement and shrinkage of the brain may be observed by magnetic resonance imaging. Some characteristic changes in the AD brain include neuronal loss in selected regions; intracellular neurofibrillary tangles in the neurons of the cerebral cortex and hippocampus; and neuritic plaques containing amyloids that may be further surrounded by dystrophic neurites, reactive astrocytes, and microglia [1]. Alzheimer Disease International estimates that there are currently 30 million cases of dementia in the world, with 4.6 million new cases occurring annually [2]. Statistics is much more ambiguous in the developing world, where few studies have examined the prevalence of dementia and where estimates vary widely. Evidence on the prevalence of AD is abundant in Europe and North America, patchy in South and Southeast Asia, and very

References

[1]  B. Biscaro, O. Lindvall, G. Tesco, C. T. Ekdahl, and R. M. Nitsch, “Inhibition of microglial activation protects hippocampal neurogenesis and improves cognitive deficits in a transgenic mouse model for Alzheimer’s disease,” Neurodegenerative Diseases, vol. 9, pp. 187–198, 2012.
[2]  C. P. Ferri, M. Prince, C. Brayne et al., “Global prevalence of dementia: a Delphi consensus study,” The Lancet, vol. 366, no. 9503, pp. 2112–2117, 2005.
[3]  J. J. L. Rodriguez, C. P. Ferri, D. Acosta et al., “Prevalence of dementia in Latin America, India, and China: a population-based cross-sectional survey,” The Lancet, vol. 372, no. 9637, pp. 464–474, 2008.
[4]  G. K. York III and D. A. Steinberg, “Neurology in ancient Egypt,” in Handbook of Clinical Neurology, vol. 95, chapter 3, pp. 29–36, Elsevier, 2009.
[5]  E. H. Jiffri and N. A. Elhawary, “The impact of common tumor necrosis factor haplotypes on the development of asthma in children: an egyptian model,” Genetic Testing and Molecular Biomarkers, vol. 15, no. 5, pp. 293–299, 2011.
[6]  H. N. El Tallawy, W. M. A. Farghly, G. A. Shehata et al., “Prevalence of dementia in Al Kharga District, New Valley Governorate, Egypt,” Neuroepidemiology, vol. 38, no. 3, pp. 130–137, 2012.
[7]  M. S. Saarela, T. Lehtim?ki, J. O. Rinne et al., “No association between the brain-derived neurotrophic factor 196G>A or 270C>T polymorphisms and Alzheimer's or Parkinson's disease,” Folia Neuropathologica, vol. 44, no. 1, pp. 12–16, 2006.
[8]  S. J. Duthie, L. J. Whalley, A. R. Collins, S. Leaper, K. Berger, and I. J. Deary, “Homocysteine, B vitamin status, and cognitive function in the elderly,” The American Journal of Clinical Nutrition, vol. 75, pp. 908–913, 2002.
[9]  E. Moore, A. Mander, D. Ames, R. Carne, K. Sanders, and D. Watters, “Cognitive impairment and vitamin B12: a review,” International Psychogeriatrics, vol. 24, no. 4, pp. 541–556, 2012.
[10]  E. A. Varga, A. C. Sturm, C. P. Misita, and S. Moll, “Homocysteine and MTHFR mutations: relation to thrombosis and coronary artery disease,” Circulation, vol. 111, no. 19, pp. e289–e293, 2005.
[11]  I. M. van Beynum, M. den Heijer, H. J. Blom, and L. Kapusta, “The MTHFR 677C → T polymorphism and the risk of congenital heart defects: a literature review and meta-analysis,” QJM, vol. 100, no. 12, pp. 743–753, 2007.
[12]  J. Chen, M. D. Gammon, W. Chan et al., “One-carbon metabolism, MTHFR polymorphisms, and risk of breast cancer,” Cancer Research, vol. 65, no. 4, pp. 1606–1614, 2005.
[13]  I. Bjelland, G. S. Tell, S. E. Vollset, H. Refsum, and P. M. Ueland, “Folate, vitamin B12, homocysteine, and the MTHFR 677C→T polymorphism in anxiety and depression. The Hordaland Homocysteine Study,” Archives of General Psychiatry, vol. 60, no. 6, pp. 618–626, 2003.
[14]  P. Frosst, H. J. Blom, R. Milos et al., “A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase,” Nature Genetics, vol. 10, no. 1, pp. 111–113, 1995.
[15]  P. Ventura, R. Panini, C. Verlato, G. Scarpetta, and G. Salvioli, “Hyperhomocysteinemia and related factors in 600 hospitalized elderly subjects,” Metabolism, vol. 50, no. 12, pp. 1466–1471, 2001.
[16]  S. Seshadri, A. Beiser, J. Selhub et al., “Plasma homocysteine as a risk factor for dementia and Alzheimer's disease,” The New England Journal of Medicine, vol. 346, no. 7, pp. 476–483, 2002.
[17]  L. Flicker, R. N. Martins, J. Thomas et al., “B-vitamins reduce plasma levels of beta amyloid,” Neurobiology of Aging, vol. 29, no. 2, pp. 303–305, 2008.
[18]  M. C. Morris, D. A. Evans, J. A. Schneider, C. C. Tangney, J. L. Bienias, and N. T. Aggarwal, “Dietary folate and vitamins B-12 and B-6 not associated with incident Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 9, no. 4, pp. 435–443, 2006.
[19]  A. R. Koudinov and N. V. Koudinova, “Cholesterol homeostasis failure as a unifying cause of synaptic degeneration,” Journal of the Neurological Sciences, vol. 229-230, pp. 233–240, 2005.
[20]  D. Religa, M. Styczynska, B. Peplonska et al., “Homocysteine, apolipoproteine E and methylenetetrahydrofolate reductase in Alzheimer's disease and mild cognitive impairment,” Dementia and Geriatric Cognitive Disorders, vol. 16, no. 2, pp. 64–70, 2003.
[21]  M. R. Keikhaee, S. B. Hashemi, H. Najmabadi, and M. Noroozian, “C677T methylentetrahydrofulate reductase and angiotensin converting enzyme gene polymorphisms in patients with Alzheimer's disease in Iranian population,” Neurochemical Research, vol. 31, no. 8, pp. 1079–1083, 2006.
[22]  S. P. McIlroy, K. B. Dynan, J. T. Lawson, C. C. Patterson, and A. P. Passmore, “Moderately elevated plasma homocysteine, methylenetetrahydrofolate reductase genotype, and risk for stroke, vascular dementia, and Alzheimer disease in Northern Ireland,” Stroke, vol. 33, no. 10, pp. 2351–2356, 2002.
[23]  B. Wang, F. Jin, R. Kan et al., “Association of MTHFR gene polymorphism C677T with susceptibility to late-onset Alzheimer's disease,” Journal of Molecular Neuroscience, vol. 27, no. 1, pp. 23–28, 2005.
[24]  L. L. Fernandez and R. M. Scheibe, “Is MTHFR polymorphism a risk factor for Alzheimer's disease like APOE?” Arquivos de Neuro-Psiquiatria, vol. 63, no. 1, pp. 1–6, 2005.
[25]  Y. D. Zhang, X. Y. Ke, W. Shen, and Y. Liu, “Relationship of homocysteine and gene polymorphisms of its related metabolic enzymes with Alzheimer’s disease,” Chinese Medical Sciences Journal, vol. 20, no. 4, pp. 247–251, 2005.
[26]  D. Seripa, G. Dal Forno, M. G. Matera et al., “Methylenetetrahydrofolate reductase and angiotensin converting enzyme gene polymorphisms in two genetically and diagnostically distinct cohort of Alzheimer patients,” Neurobiology of Aging, vol. 24, no. 7, pp. 933–939, 2003.
[27]  T. Kida, K. Kamino, M. Yamamoto, et al., “C677T polymorphism of methylenetetrahydrofolate reductase gene affects plasma homocysteine level and is a genetic factor of late-onset Alzheimer’s disease,” Psychogeriatrics, vol. 4, no. 1, pp. 4–10, 2004.
[28]  J. Chapman, N. Wang, T. A. Treves, A. D. Korczyn, and N. M. Bornstein, “ACE, MTHFR, factor V Leiden, and APOE polymorphisms in patients with vascular and Alzheimer's dementia,” Stroke, vol. 29, no. 7, pp. 1401–1404, 1998.
[29]  T. Brunelli, S. Bagnoli, B. Giusti et al., “The C677T methylenetetrahydrofolate reductase mutation is not associated with Alzheimer's disease,” Neuroscience Letters, vol. 315, no. 1-2, pp. 103–105, 2001.
[30]  X.-H. Bi, H.-L. Zhao, Z.-X. Zhang, and J.-W. Zhang, “Association of RFC1 A80G and MTHFR C677T polymorphisms with Alzheimer's disease,” Neurobiology of Aging, vol. 30, no. 10, pp. 1601–1607, 2009.
[31]  J. A. Prince, L. Feuk, S. L. Sawyer et al., “Lack of replication of association findings in complex disease: an analysis of 15 polymorphisms in prior candidate genes for sporadic Alzheimer's disease,” European Journal of Human Genetics, vol. 9, no. 6, pp. 437–444, 2001.
[32]  J.-M. Kim, R. Stewart, S.-W. Kim et al., “Methylenetetrahydrofolate reductase gene and risk of Alzheimer's disease in Koreans,” International Journal of Geriatric Psychiatry, vol. 23, no. 5, pp. 454–459, 2008.
[33]  R. M. Shawky, N. S. Sayed, and N. A. Elhawary, “Mutations in transglutaminase 1 gene in autosomal recessive congenital ichthyosis in Egyptian families,” Disease Markers, vol. 20, no. 6, pp. 325–332, 2004.
[34]  M.-Y. Zhang, L. Miao, Y.-S. Li, and G.-Y. Hu, “Meta-analysis of the methylenetetrahydrofolate reductase C677T polymorphism and susceptibility to Alzheimer's disease,” Neuroscience Research, vol. 68, no. 2, pp. 142–150, 2010.
[35]  A. Rocchi, S. Pellegrini, G. Siciliano, and L. Murri, “Causative and susceptibility genes for Alzheimer's disease: a review,” Brain Research Bulletin, vol. 61, no. 1, pp. 1–24, 2003.
[36]  R. J. Guerreiro, E. Lohmann, E. Kinsella et al., “Exome sequencing reveals an unexpected genetic cause of disease: NOTCH3 mutation in a Turkish family with Alzheimer's disease,” Neurobiology of Aging, vol. 33, no. 5, pp. e17–e23, 2012.
[37]  F. Coppedè, P. Tannorella, I. Pezzini, et al., “Folate, homocysteine, vitamin B12, and polymorphisms of genes participating in one-carbon metabolism in late-onset Alzheimer's disease patients and healthy controls,” Antioxidants & Redox Signaling, vol. 17, no. 2, pp. 195–204, 2012.
[38]  J. Sundel?f, J. Sundstr?m, O. Hansson, et al., “Higher cathepsin B levels in plasma in Alzheimer's disease compared to healthy controls,” Journal of Alzheimer's Disease, vol. 22, no. 4, pp. 1223–1230, 2010.
[39]  M. S. Kindy, J. Yu, H. Zhu, S. S. El-Amouri, V. Hook, and G. R. Hook, “Deletion of the cathepsin B gene improves memory deficits in a transgenic alzheimer's disease mouse model expressing AβPP containing the wild-type β-secretase site sequence,” Journal of Alzheimer's Disease, vol. 29, no. 4, pp. 827–840, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133