全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Clinical, MRI, and CSF Markers of Disability Progression in Multiple Sclerosis

DOI: 10.1155/2013/484959

Full-Text   Cite this paper   Add to My Lib

Abstract:

Multiple sclerosis (MS) is a chronic disorder of the central nervous system (CNS) in which the complex interplay between inflammation and neurodegeneration determines varying degrees of neurological disability. For this reason, it is very difficult to express an accurate prognosis based on purely clinical information in the individual patient at an early disease stage. Magnetic resonance imaging (MRI) and cerebrospinal fluid (CSF) biomarkers are promising sources of prognostic information with a good potential of quantitative measure, sensitivity, and reliability. However, a comprehensive MS outcome prediction model combining multiple parameters is still lacking. Current relevant literature addressing the topic of clinical, MRI, and CSF markers as predictors of MS disability progression is reviewed here. 1. Introduction Multiple sclerosis (MS) is a chronic idiopathic disorder of the central nervous system (CNS) sustained by a multifocal inflammatory process predominantly affecting myelin-sheathed axons. Although traditionally viewed as a white matter (WM) demyelinating disorder, MS is characterized by acute and chronic axonal and neuronal loss, as shown for long by pathological and neuroimaging studies [1, 2]. Acute inflammation causes the development of plaques, characterized by blood-brain barrier (BBB) breakdown, perivascular cellular infiltration, demyelination, and axonal degeneration. Notably, axonal damage occurs not only in the acute phase but also in inactive MS lesions [3, 4]. Plaques represent the underlying pathological substrate of clinical events, with occurrence of focal/multifocal neurological symptoms and signs that eventually subside in many cases as inflammation ceases. Lesions may also involve the cortical gray matter (GM) in which case they are characterized by myelin/axonal injury and microglial activation but not BBB disruption [5] and less cellular infiltration compared to WM lesions [6, 7]. It is increasingly perceived that the severity of MS clinical outcome does not simply result from the extent of WM damage, but it rather represents a complex balance among WM and GM tissue damage, tissue repair, and cortical reorganisation [8–10]. The evidence that axonal loss highly correlates with neurological disability and disease progression [2] has spurred the search for reliable markers of axonal degeneration. Although MS aetiology still remains undetermined, genetic and environmental risk factors have been identified or are suspected (i.e., female gender, HLA-DRB1 allele, genome-wide association studies candidate genes, Epstein-Barr

References

[1]  B. D. Trapp, J. Peterson, R. M. Ransohoff, R. Rudick, S. M?rk, and L. B?, “Axonal transection in the lesions of multiple sclerosis,” The New England Journal of Medicine, vol. 338, no. 5, pp. 278–285, 1998.
[2]  J. H. van Waesberghe, W. Kamphorst, C. J. de Groot, et al., “Axonal loss in multiple sclerosis lesions: magnetic resonance imaging insights into substrates of disability,” Annals of Neurology, vol. 46, no. 5, pp. 747–754, 1999.
[3]  B. Ferguson, M. K. Matyszak, M. M. Esiri, and V. H. Perry, “Axonal damage in acute multiple sclerosis lesions,” Brain, vol. 120, no. 3, pp. 393–399, 1997.
[4]  D. Barnes, P. M. G. Munro, B. D. Youl, J. W. Prineas, and W. I. McDonald, “The longstanding MS lesion. A quantitative MRI and electron microscopic study,” Brain, vol. 114, no. 3, pp. 1271–1280, 1991.
[5]  J. van Horssen, B. P. Brink, H. E. de Vries, P. Van der Valk, and L. B?, “The blood-brain barrier in cortical multiple sclerosis lesions,” Journal of Neuropathology and Experimental Neurology, vol. 66, no. 4, pp. 321–328, 2007.
[6]  J. W. Peterson, L. B?, S. M?rk, A. Chang, and B. D. Trapp, “Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions,” Annals of Neurology, vol. 50, no. 3, pp. 389–400, 2001.
[7]  C. F. Lucchinetti, B. F. G. Popescu, R. F. Bunyan et al., “Inflammatory cortical demyelination in early multiple sclerosis,” The New England Journal of Medicine, vol. 365, no. 23, pp. 2188–2197, 2011.
[8]  A. Charil, A. Dagher, J. P. Lerch, A. P. Zijdenbos, K. J. Worsley, and A. C. Evans, “Focal cortical atrophy in multiple sclerosis: relation to lesion load and disability,” NeuroImage, vol. 34, no. 2, pp. 509–517, 2007.
[9]  R. Reynolds, F. Roncaroli, R. Nicholas, B. Radotra, D. Gveric, and O. Howell, “The neuropathological basis of clinical progression in multiple sclerosis,” Acta Neuropathologica, vol. 122, no. 2, pp. 155–170, 2011.
[10]  J. J. Geurts, M. Calabrese, E. Fisher, and R. A. Rudick, “Measurement and clinical effect of grey matter pathology in multiple sclerosis,” The Lancet Neurology, vol. 11, no. 12, pp. 1082–1192, 2012.
[11]  S. Sawcer, “The complex genetics of multiple sclerosis: pitfalls and prospects,” Brain, vol. 131, no. 12, pp. 3118–3131, 2008.
[12]  International Multiple Sclerosis Genetics Consortium, “MANBA, CXCR5, SOX8, RPS6KB1 and ZBTB46 are genetic risk loci for multiple sclerosis,” Brain, vol. 136, no. 6, pp. 1778–1782, 2013.
[13]  A. Ascherio and K. L. Munger, “Environmental risk factors for multiple sclerosis. Part I: the role of infection,” Annals of Neurology, vol. 61, no. 4, pp. 288–299, 2007.
[14]  A. Ascherio and K. L. Munger, “Environmental risk factors for multiple sclerosis. Part II: noninfectious factors,” Annals of Neurology, vol. 61, no. 6, pp. 504–513, 2007.
[15]  A. Nylander and D. A. Hafler, “Multiple sclerosis,” Journal of Clinical Investigation, vol. 122, no. 4, pp. 1180–1188, 2012.
[16]  C. Confavreux and S. Vukusic, “Natural history of multiple sclerosis: a unifying concept,” Brain, vol. 129, no. 3, pp. 606–616, 2006.
[17]  D. H. Miller and S. M. Leary, “Primary-progressive multiple sclerosis,” The Lancet Neurology, vol. 6, no. 10, pp. 903–912, 2007.
[18]  C. Confavreux, S. Vukusic, T. Moreau, and P. Adeleine, “Relapses and progression of disability in multiple sclerosis,” The New England Journal of Medicine, vol. 343, no. 20, pp. 1430–1438, 2000.
[19]  M. Tintoré, A. Rovira, J. Rio et al., “Is optic neuritis more benign than other first attacks in multiple sclerosis?” Annals of Neurology, vol. 57, no. 2, pp. 210–215, 2005.
[20]  E. M. Mowry, S. Deen, I. Malikova, J. Pelletier, P. Bacchetti, and E. Waubant, “The onset location of multiple sclerosis predicts the location of subsequent relapses,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 80, no. 4, pp. 400–403, 2009.
[21]  M. P. Sormani, M. Tintorè, M. Rovaris et al., “Will Rogers phenomenon in multiple sclerosis,” Annals of Neurology, vol. 64, no. 4, pp. 428–433, 2008.
[22]  M. Eriksson, O. Andersen, and B. Runmarker, “Long-term follow up of patients with clinically isolated syndromes, relapsing-remitting and secondary progressive multiple sclerosis,” Multiple Sclerosis, vol. 9, no. 3, pp. 260–274, 2003.
[23]  C. H. Polman, S. C. Reingold, B. Banwell et al., “Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria,” Annals of Neurology, vol. 69, no. 2, pp. 292–302, 2011.
[24]  B. G. Weinshenker, G. P. A. Rice, J. H. Noseworthy, W. Carriere, J. Baskerville, and G. C. Ebers, “The natural history of multiple sclerosis: a geographically based study. 3. Multivariate analysis of predictive factors and models of outcome,” Brain, vol. 114, no. 2, pp. 1045–1056, 1991.
[25]  C. Confavreux, S. Vukusic, and P. Adeleine, “Early clinical predictors and progression of irreversible disability in multiple sclerosis: an amnesic process,” Brain, vol. 126, no. 4, pp. 770–782, 2003.
[26]  H. Tremlett, D. Paty, and V. Devonshire, “Disability progression in multiple sclerosis is slower than previously reported,” Neurology, vol. 66, no. 2, pp. 172–177, 2006.
[27]  M. Debouverie, S. Pittion-Vouyovitch, S. Louis, and F. Guillemin, “Natural history of multiple sclerosis in a population-based cohort,” European Journal of Neurology, vol. 15, no. 9, pp. 916–921, 2008.
[28]  H. Tremlett, Y. Zhao, and V. Devonshire, “Natural history of secondary-progressive multiple sclerosis,” Multiple Sclerosis, vol. 14, no. 3, pp. 314–324, 2008.
[29]  S. Vukusic and C. Confavreux, “Prognostic factors for progression of disability in the secondary progressive phase of multiple sclerosis,” Journal of the Neurological Sciences, vol. 206, no. 2, pp. 135–137, 2003.
[30]  B. Runmarker and O. Andersen, “Prognostic factors in a multiple sclerosis incidence cohort with twenty-five years of follow-up,” Brain, vol. 116, no. 1, pp. 117–134, 1993.
[31]  M. W. Koch, M. Uyttenboogaart, A. van Harten, and J. de Keyser, “Factors associated with the risk of secondary progression in multiple sclerosis,” Multiple Sclerosis, vol. 14, no. 6, pp. 799–803, 2008.
[32]  H. Tremlett, M. Yousefi, V. Devonshire, P. Rieckmann, and Y. Zhao, “Impact of multiple sclerosis relapses on progression diminishes with time,” Neurology, vol. 73, no. 20, pp. 1616–1623, 2009.
[33]  M. Filippi, D. W. Paty, L. Kappos et al., “Correlations between changes in disability and T2-weighted brain MRI activity in multiple sclerosis: a follow-up study,” Neurology, vol. 45, no. 2, pp. 255–260, 1995.
[34]  L. Kappos, D. Moeri, E. W. Radue et al., “Predictive value of gadolinium-enhanced magnetic resonance imaging for relapse rate and changes in disability or impairment in multiple sclerosis: a meta-analysis,” The Lancet, vol. 353, no. 9157, pp. 964–969, 1999.
[35]  S. Mesaros, M. A. Rocca, M. P. Sormani, A. Charil, G. Comi, and M. Filippi, “Clinical and conventional MRI predictors of disability and brain atrophy accumulation in RRMS: a large scale, short-term follow-up study,” Journal of Neurology, vol. 255, no. 9, pp. 1378–1383, 2008.
[36]  S. A. Gauthier, M. Mandel, C. R. G. Guttmann et al., “Predicting short-term disability in multiple sclerosis,” Neurology, vol. 68, no. 24, pp. 2059–2065, 2007.
[37]  V. L. Stevenson, G. T. Ingle, D. H. Miller, and A. J. Thompson, “Magnetic resonance imaging predictors of disability in primary progressive multiple sclerosis: a 5-year study,” Multiple Sclerosis, vol. 10, no. 4, pp. 398–401, 2004.
[38]  M. Sailer, N. A. Losseff, L. Wang, M. L. Gawne-Cain, A. J. Thompson, and D. H. Miller, “T1 lesion load and cerebral atrophy as a marker for clinical progression in patients with multiple sclerosis. A prospective 18 months follow-up study,” European Journal of Neurology, vol. 8, no. 1, pp. 37–42, 2001.
[39]  A. Minneboo, B. Jasperse, F. Barkhof et al., “Predicting short-term disability progression in early multiple sclerosis: added value of MRI parameters,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 79, no. 8, pp. 917–923, 2008.
[40]  Z. Khaleeli, O. Ciccatelli, F. Manfredonia et al., “Predicting progression in primary progressive multiple sclerosis: a 10-year multicenter study,” Annals of Neurology, vol. 63, no. 6, pp. 790–793, 2008.
[41]  V. Popescu, F. Agosta, H. E. Hulst, et al., “Brain atrophy and lesion load predict long term disability in multiple sclerosis,” Journal of Neurology, Neurosurgery, and Psychiatry, vol. 84, no. 10, pp. 1082–1091, 2013.
[42]  B. Jasperse, H. Vrenken, E. Sanz-Arigita et al., “Regional brain atrophy development is related to specific aspects of clinical dysfunction in multiple sclerosis,” NeuroImage, vol. 38, no. 3, pp. 529–537, 2007.
[43]  J. Sepulcre, J. Sastre-Garriga, M. Cercignani, G. T. Ingle, D. H. Miller, and A. J. Thompson, “Regional gray matter atrophy in early primary progressive multiple sclerosis: a voxel-based morphometry study,” Archives of Neurology, vol. 63, no. 8, pp. 1175–1180, 2006.
[44]  J. T. Chen, S. Narayanan, D. L. Collins, S. M. Smith, P. M. Matthews, and D. L. Arnold, “Relating neocortical pathology to disability progression in multiple sclerosis using MRI,” NeuroImage, vol. 23, no. 3, pp. 1168–1175, 2004.
[45]  L. K. Fisniku, D. T. Chard, J. S. Jackson et al., “Gray matter atrophy is related to long-term disability in multiple sclerosis,” Annals of Neurology, vol. 64, no. 3, pp. 247–254, 2008.
[46]  S. D. Roosendaal, K. Bendfeldt, H. Vrenken et al., “Grey matter volume in a large cohort of MS patients: relation to MRI parameters and disability,” Multiple Sclerosis, vol. 17, no. 9, pp. 1098–1106, 2011.
[47]  R. A. Rudick, J.-C. Lee, K. Nakamura, and E. Fisher, “Gray matter atrophy correlates with MS disability progression measured with MSFC but not EDSS,” Journal of the Neurological Sciences, vol. 282, no. 1-2, pp. 106–111, 2009.
[48]  M. Calabrese, C. Romualdi, V. Poretto, et al., “The changing clinical course of multiple sclerosis: a matter of grey matter,” Annals of Neurology, vol. 74, no. 1, pp. 76–83, 2013.
[49]  M. Sailer, B. Fischl, D. Salat et al., “Focal thinning of the cerebral cortex in multiple sclerosis,” Brain, vol. 126, no. 8, pp. 1734–1744, 2003.
[50]  B. Audoin, G. R. Davies, L. Finisku, D. T. Chard, A. J. Thompson, and D. H. Miller, “Localization of grey matter atrophy in early RRMS: a longitudinal study,” Journal of Neurology, vol. 253, no. 11, pp. 1495–1501, 2006.
[51]  M. Calabrese, M. Atzori, V. Bernardi et al., “Cortical atrophy is relevant in multiple sclerosis at clinical onset,” Journal of Neurology, vol. 254, no. 9, pp. 1212–1220, 2007.
[52]  R. H. B. Benedict, D. Ramasamy, F. Munschauer, B. Weinstock-Guttman, and R. Zivadinov, “Memory impairment in multiple sclerosis: correlation with deep grey matter and mesial temporal atrophy,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 80, no. 2, pp. 201–206, 2009.
[53]  N. L. Sicotte, K. C. Kern, B. S. Giesser et al., “Regional hippocampal atrophy in multiple sclerosis,” Brain, vol. 131, no. 4, pp. 1134–1141, 2008.
[54]  M. Calabrese, V. Poretto, A. Favaretto, et al., “Cortical lesion load associates with progression of disability in multiple sclerosis,” Brain, vol. 135, no. 10, pp. 2952–2961, 2012.
[55]  G. J. Lycklama à Nijeholt, M. A. A. van Walderveen, J. A. Castelijns et al., “Brain and spinal cord abnormalities in multiple sclerosis: correlation between MRI parameters, clinical subtypes and symptoms,” Brain, vol. 121, no. 4, pp. 687–697, 1998.
[56]  N. A. Losseff, S. L. Webb, J. I. O'Riordan et al., “Spinal cord atrophy and disability in multiple sclerosis. A new reproducible and sensitive MRI method with potential to monitor disease progression,” Brain, vol. 119, no. 3, pp. 701–708, 1996.
[57]  M. Rovaris, M. Bozzali, G. Santuccio et al., “Relative contributions of brain and cervical cord pathology to multiple sclerosis disability: a study with magnetisation transfer ratio histogram analysis,” Journal of Neurology Neurosurgery and Psychiatry, vol. 69, no. 6, pp. 723–727, 2000.
[58]  F. Agosta, M. Rovaris, E. Pagani, M. P. Sormani, G. Comi, and M. Filippi, “Magnetization transfer MRI metrics predict the accumulation of disability 8 years later in patients with multiple sclerosis,” Brain, vol. 129, no. 10, pp. 2620–2627, 2006.
[59]  M. Rovaris, E. Judica, A. Gallo et al., “Grey matter damage predicts the evolution of primary progressive multiple sclerosis at 5 years,” Brain, vol. 129, no. 10, pp. 2628–2634, 2006.
[60]  M. Calabrese, F. Rinaldi, D. Seppi et al., “Cortical diffusion-tensor imaging abnormalities in multiple sclerosis: a 3-year longitudinal study,” Radiology, vol. 261, no. 3, pp. 891–898, 2011.
[61]  A. Martínez-Yélamos, A. Rovira, R. Sánchez-Valle et al., “CSF 14-3-3 protein assay and MRI as prognostic markers in patients with a clinically isolated syndrome suggestive of MS,” Journal of Neurology, vol. 251, no. 10, pp. 1278–1279, 2004.
[62]  M. Colucci, L. Roccatagliata, E. Capello et al., “The 14-3-3 protein in multiple sclerosis: a marker of disease severity,” Multiple Sclerosis, vol. 10, no. 5, pp. 477–481, 2004.
[63]  F. G. Joseph, C. L. Hirst, T. P. Pickersgill, Y. Ben-Shlomo, N. P. Robertson, and N. J. Scolding, “CSF oligoclonal band status informs prognosis in multiple sclerosis: a case control study of 100 patients,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 80, no. 3, pp. 292–296, 2009.
[64]  N. Norgren, P. Sundstr?m, A. Svenningsson, L. Rosengren, T. Stigbrand, and M. Gunnarsson, “Neurofilament and glial fibrillary acidic protein in multiple sclerosis,” Neurology, vol. 63, no. 9, pp. 1586–1590, 2004.
[65]  J. Salzer, A. Svenningsson, and P. Sundstr?m, “Neurofilament light as a prognostic marker in multiple sclerosis,” Multiple Sclerosis, vol. 16, no. 3, pp. 287–292, 2010.
[66]  A. Petzold, M. J. Eikelenboom, G. Keir et al., “Axonal damage accumulates in the progressive phase of multiple sclerosis: three year follow up study,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 76, no. 2, pp. 206–211, 2005.
[67]  K. Rejdak, A. Petzold, Z. Stelmasiak, and G. Giovannoni, “Cerebrospinal fluid brain specific proteins in relation to nitric oxide metabolites during relapse of multiple sclerosis,” Multiple Sclerosis, vol. 14, no. 1, pp. 59–66, 2008.
[68]  L. M. Villar, N. García-Barragán, M. Espi?o et al., “Influence of oligoclonal IgM specificity in multiple sclerosis disease course,” Multiple Sclerosis, vol. 14, no. 2, pp. 183–187, 2008.
[69]  J. Mandrioli, P. Sola, R. Bedin, M. Gambini, and E. Merelli, “A multifactorial prognostic index in multiple sclerosis: cerebrospinal fluid IgM oligoclonal bands and clinical features to predict the evolution of the disease,” Journal of Neurology, vol. 255, no. 7, pp. 1023–1031, 2008.
[70]  M. Comabella, M. Fernández, R. Martin et al., “Cerebrospinal fluid chitinase 3-like 1 levels are associated with conversion to multiple sclerosis,” Brain, vol. 133, no. 4, pp. 1082–1093, 2010.
[71]  A. Gajofatto, S. Monaco, M. Fiorini et al., “Assessment of outcome predictors in first-episode acute myelitis a retrospective study of 53 cases,” Archives of Neurology, vol. 67, no. 6, pp. 724–730, 2010.
[72]  H. Tremlett, Y. Zhao, P. Rieckmann, and M. Hutchinson, “New perspectives in the natural history of multiple sclerosis,” Neurology, vol. 74, no. 24, pp. 2004–2015, 2010.
[73]  A. Gajofatto, M. Bongianni, G. Zanusso et al., “Clinical and biomarker assessment of demyelinating events suggesting multiple sclerosis,” Acta Neurologica Scandinavica, vol. 128, no. 5, pp. 336–344, 2013.
[74]  A. E. Hensiek, S. R. Seaman, L. F. Barcellos et al., “Familial effects on the clinical course of multiple sclerosis,” Neurology, vol. 68, no. 5, pp. 376–383, 2007.
[75]  C. Confavreux and S. Vukusic, “Age at disability milestones in multiple sclerosis,” Brain, vol. 129, no. 3, pp. 595–605, 2006.
[76]  C. Renoux, S. Vukusic, Y. Mikaeloff et al., “Natural history of multiple sclerosis with childhood onset,” The New England Journal of Medicine, vol. 356, no. 25, pp. 2603–2613, 2007.
[77]  M. Tutuncu, J. Tang, N. A. Zeid, et al., “Onset of progressive phase is an age-dependent clinical milestone in multiple sclerosis,” Multiple Sclerosis, vol. 19, no. 2, pp. 188–198, 2013.
[78]  A. Scalfari, A. Neuhaus, A. Degenhardt et al., “The natural history of multiple sclerosis, a geographically based study 10: relapses and long-term disability,” Brain, vol. 133, no. 7, pp. 1914–1929, 2010.
[79]  M. Hutchinson, “Truly benign multiple sclerosis is rare: Let's stop fooling ourselves—commentary,” Multiple Sclerosis, vol. 18, no. 1, p. 15, 2012.
[80]  J. F. Kurtzke, “Rating neurologic impairment in multiple sclerosis: an Expanded Disability Status Scale (EDSS),” Neurology, vol. 33, no. 11, pp. 1444–1452, 1983.
[81]  F. D. Lublin and S. C. Reingold, “Defining the clinical course of multiple sclerosis: results of an international survey,” Neurology, vol. 46, no. 4, pp. 907–911, 1996.
[82]  S. J. Pittock, R. L. McClelland, W. T. Mayr et al., “Clinical implications of benign multiple sclerosis: a 20-year population-based follow-up study,” Annals of Neurology, vol. 56, no. 2, pp. 303–306, 2004.
[83]  M. P. Amato, E. Portaccio, M. L. Stromillo et al., “Cognitive assessment and quantitative magnetic resonance metrics can help to identify benign multiple sclerosis,” Neurology, vol. 71, no. 9, pp. 632–638, 2008.
[84]  A.-L. Sayao, V. Devonshire, and H. Tremlett, “Longitudinal follow-up of “benign” multiple sclerosis at 20 years,” Neurology, vol. 68, no. 7, pp. 496–500, 2007.
[85]  G. S. M. Ramsaransing and J. de Keyser, “Predictive value of clinical characteristics for “benign” multiple sclerosis,” European Journal of Neurology, vol. 14, no. 8, pp. 885–889, 2007.
[86]  E. Leray, M. Coustans, E. Le Page, J. Yaouanq, J. Oger, and G. Edan, “‘Clinically definite benign multiple sclerosis’, an unwarranted conceptual hodgepodge: evidence from a 30-year observational study,” Multiple Sclerosis, vol. 19, no. 4, pp. 458–465, 2013.
[87]  L. Costelloe, A. Thompson, C. Walsh, N. Tubridy, and M. Hutchinson, “Long-term clinical relevance of criteria for designating multiple sclerosis as benign after 10 years of disease,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 79, no. 11, pp. 1245–1248, 2008.
[88]  P. O'Connor, P. Marchetti, L. Lee, and M. Perera, “Evoked potential abnormality scores are a useful measure of disease burden in relapsing-remitting multiple sclerosis,” Annals of Neurology, vol. 44, no. 3, pp. 404–407, 1998.
[89]  P. Fuhr, A. Borggrefe-Chappuis, C. Schindler, and L. Kappos, “Visual and motor evoked potentials in the course of multiple sclerosis,” Brain, vol. 124, no. 11, pp. 2162–2168, 2001.
[90]  L. Leocani, M. Rovaris, F. M. Boneschi et al., “Multimodal evoked potentials to assess the evolution of multiple sclerosis: a longitudinal study,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 77, no. 9, pp. 1030–1035, 2006.
[91]  B. A. Kallmann, S. Fackelmann, K. V. Toyka, P. Rieckmann, and K. Reiners, “Early abnormalities of evoked potentials and future disability in patients with multiple sclerosis,” Multiple Sclerosis, vol. 12, no. 1, pp. 58–65, 2006.
[92]  P. Invernizzi, L. Bertolasi, M. R. Bianchi, M. Turatti, A. Gajofatto, and M. D. Benedetti, “Prognostic value of multimodal evoked potentials in multiple sclerosis: the EP score,” Journal of Neurology, vol. 258, no. 11, pp. 1933–1939, 2011.
[93]  R. Schlaeger, M. D'Souza, C. Schindler et al., “Prediction of long-term disability in multiple sclerosis,” Multiple Sclerosis, vol. 18, no. 1, pp. 31–38, 2012.
[94]  R. Pelayo, X. Montalban, T. Minoves et al., “Do multimodal evoked potentials add information to MRI in clinically isolated syndromes?” Multiple Sclerosis, vol. 16, no. 1, pp. 55–61, 2010.
[95]  A. Petzold, J. F. de Boer, S. Schippling et al., “Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis,” The Lancet Neurology, vol. 9, no. 9, pp. 921–932, 2010.
[96]  K. L. Young, A. U. Brandt, A. Petzold, et al., “Loss of retinal nerve fibre layer axons indicates white but not grey matter damage in early multiple sclerosis,” European Journal of Neurology, vol. 20, no. 5, pp. 803–811, 2013.
[97]  J. N. Ratchford, S. Saidha, E. S. Sotirchos, et al., “Active MS is associated with accelerated retinal ganglion cell/inner plexiform layer thinning,” Neurology, vol. 80, no. 1, pp. 47–54, 2013.
[98]  S. Saidha, S. B. Syc, M. A. Ibrahim et al., “Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography,” Brain, vol. 134, no. 2, pp. 518–533, 2011.
[99]  P. Albrecht, M. Ringelstein, A. K. Müller, et al., “Degeneration of retinal layers in multiple sclerosis subtypes quantified by optical coherence tomography,” Multiple Sclerosis, vol. 18, no. 10, pp. 1422–1429, 2012.
[100]  F. Fazekas, P. Soelberg-Sorensen, G. Comi, and M. Filippi, “MRI to monitor treatment efficacy in multiple sclerosis,” Journal of Neuroimaging, vol. 17, supplement s1, pp. 50S–55S, 2007.
[101]  P. A. Brex, O. Ciccarelli, J. I. O'Riordan, M. Sailer, A. J. Thompson, and D. H. Miller, “A longitudinal study of abnormalities on MRI and disability from multiple sclerosis,” The New England Journal of Medicine, vol. 346, no. 3, pp. 158–164, 2002.
[102]  M. Filippi, M. A. Horsfield, S. P. Morrissey et al., “Quantitative brain MRI lesion load predicts the course of clinically isolated syndromes suggestive of multiple sclerosis,” Neurology, vol. 44, no. 4, pp. 635–641, 1994.
[103]  F. Pérez-Miralles, J. Sastre-Garriga, M. Tintoré, et al., “Clinical impact of early brain atrophy in clinically isolated syndromes,” Multiple Sclerosis, 2013.
[104]  M. A. Rocca, S. Mesaros, E. Pagani, M. P. Sormani, G. Comi, and M. Filippi, “Thalamic damage and long-term progression of disability in multiple sclerosis,” Radiology, vol. 257, no. 2, pp. 463–469, 2010.
[105]  A. Kutzelnigg, J. C. Faber-Rod, J. Bauer et al., “Widespread demyelination in the cerebellar cortex in multiple sclerosis,” Brain Pathology, vol. 17, no. 1, pp. 38–44, 2007.
[106]  M. Calabrese, I. Mattisi, F. Rinaldi et al., “Magnetic resonance evidence of cerebellar cortical pathology in multiple sclerosis,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 81, no. 4, pp. 401–404, 2010.
[107]  M. Calabrese, P. Grossi, A. Favaretto et al., “Cortical pathology in multiple sclerosis patients with epilepsy: a 3 year longitudinal study,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 83, no. 1, pp. 49–54, 2012.
[108]  G. Lycklama, A. Thompson, M. Filippi et al., “Spinal-cord MRI in multiple sclerosis,” The Lancet Neurology, vol. 2, no. 9, pp. 555–562, 2003.
[109]  F. Agosta, M. Absinta, M. P. Sormani et al., “In vivo assessment of cervical cord damage in MS patients: a longitudinal diffusion tensor MRI study,” Brain, vol. 130, no. 8, pp. 2211–2219, 2007.
[110]  A. Martínez-Yélamos, A. Saiz, J. Bas, J. J. Hernandez, F. Graus, and T. Arbizu, “Tau protein in cerebrospinal fluid: a possible marker of poor outcome in patients with early relapsing-remitting multiple sclerosis,” Neuroscience Letters, vol. 363, no. 1, pp. 14–17, 2004.
[111]  J. Brettschneider, H. Tumani, U. Kiechle et al., “IgG antibodies against measles, rubella, and varicella zoster virus predict conversion to multiple sclerosis in clinically isolated syndrome,” PLoS ONE, vol. 4, no. 11, Article ID e7638, 2009.
[112]  M. Khademi, I. Kockum, M. L. Andersson et al., “Cerebrospinal fluid CXCL13 in multiple sclerosis: a suggestive prognostic marker for the disease course,” Multiple Sclerosis, vol. 17, no. 3, pp. 335–343, 2011.
[113]  C. E. Teunissen, P. C. Dijkstra, and C. Polman, “Biological markers in CSF and blood for axonal degeneration in multiple sclerosis,” The Lancet Neurology, vol. 4, no. 1, pp. 32–41, 2005.
[114]  A. Gajofatto, M. Bongianni, G. Zanusso, M. D. Benedetti, and S. Monaco, “Are cerebrospinal fluid biomarkers useful in predicting the prognosis of multiple sclerosis patients?” International Journal of Molecular Sciences, vol. 12, no. 11, pp. 7960–7970, 2011.
[115]  E. Kapaki, G. P. Paraskevas, M. Michalopoulou, and K. Kilidireas, “Increased cerebrospinal fluid tau protein in multiple sclerosis,” European Neurology, vol. 43, no. 4, pp. 228–232, 2000.
[116]  H. Bartosik-Psujek and J. J. Archelos, “Tau protein and 14-3-3 are elevated in the cerebrospinal fluid of patients with multiple sclerosis and correlate with intrathecal synthesis of IgG,” Journal of Neurology, vol. 251, no. 4, pp. 414–420, 2004.
[117]  J. Brettschneider, M. Maier, S. Arda et al., “Tau protein level in cerebrospinal fluid is increased in patients with early multiple sclerosis,” Multiple Sclerosis, vol. 11, no. 3, pp. 261–265, 2005.
[118]  M. Terzi, A. Birinci, E. ?etinkaya, and M. K. Onar, “Cerebrospinal fluid total tau protein levels in patients with multiple sclerosis,” Acta Neurologica Scandinavica, vol. 115, no. 5, pp. 325–330, 2007.
[119]  J. Frederiksen, K. Kristensen, J. M. C. Bahl, and M. Christiansen, “Tau protein: a possible prognostic factor in optic neuritis and multiple sclerosis,” Multiple Sclerosis, vol. 18, no. 5, pp. 592–599, 2012.
[120]  F. J. Jiménez-Jiménez, J. M. Zurdo, A. Hernanz et al., “Tau protein concentrations in cerebrospinal fluid of patients with multiple sclerosis,” Acta Neurologica Scandinavica, vol. 106, no. 6, pp. 351–354, 2002.
[121]  J. Guimar?es, M. J. Cardoso, and M. J. Sá, “Tau protein seems not to be a useful routine clinical marker of axonal damage in multiple sclerosis,” Multiple Sclerosis, vol. 12, no. 3, pp. 354–356, 2006.
[122]  C. E. Teunissen, E. Iacobaeus, M. Khademi et al., “Combination of CSF N-acetylaspartate and neurofilaments in multiple sclerosis,” Neurology, vol. 72, no. 15, pp. 1322–1329, 2009.
[123]  M. Fiorini, G. Zanusso, M. D. Benedetti, P. G. Righetti, and S. Monaco, “Cerebrospinal fluid biomarkers in clinically isolated syndromes and multiple sclerosis,” Proteomics, vol. 1, no. 9, pp. 963–971, 2007.
[124]  J. Jaworski, M. Psujek, M. Janczarek, M. Szczerbo-Trojanowska, and H. Bartosik-Psujek, “Total-tau in cerebrospinal fluid of patients with multiple sclerosis decreases in secondary progressive stage of disease and reflects degree of brain atrophy,” Upsala Journal of Medical Sciences, vol. 117, no. 3, pp. 284–292, 2012.
[125]  N. de Stefano, A. Giorgio, M. Battaglini et al., “Assessing brain atrophy rates in a large population of untreated multiple sclerosis subtypes,” Neurology, vol. 74, no. 23, pp. 1868–1876, 2010.
[126]  J. de Seze, K. Peoc'h, D. Ferriby, T. Stojkovic, J.-L. Laplanche, and P. Vermersch, “14-3-3 protein in the cerebrospinal fluid of patients with acute transverse myelitis and multiple sclerosis,” Journal of Neurology, vol. 249, no. 5, pp. 626–627, 2002.
[127]  K. Hein (née Maier), A. K?hler, R. Diem et al., “Biological markers for axonal degeneration in CSF and blood of patients with the first event indicative for multiple sclerosis,” Neuroscience Letters, vol. 436, no. 1, pp. 72–76, 2008.
[128]  C. Malmestr?m, S. Haghighi, L. Rosengren, O. Andersen, and J. Lycke, “Neurofilament light protein and glial fibrillary acidic protein as biological markers in MS,” Neurology, vol. 61, no. 12, pp. 1720–1725, 2003.
[129]  J. Kuhle, D. Leppert, A. Petzold et al., “Neurofilament heavy chain in CSF correlates with relapses and disability in multiple sclerosis,” Neurology, vol. 76, no. 14, pp. 1206–1213, 2011.
[130]  M. Khalil, C. Enzinger, C. Langkammer, et al., “CSF neurofilament and N-acetylaspartate related brain changes in clinically isolated syndrome,” Multiple Sclerosis, vol. 19, no. 4, pp. 436–442, 2013.
[131]  B. Bielekova and R. Martin, “Development of biomarkers in multiple sclerosis,” Brain, vol. 127, no. 7, pp. 1463–1478, 2004.
[132]  C. E. Teunissen, A. Petzold, J. L. Bennett et al., “A consensus protocol for the standardization of cerebrospinal fluid collection and biobanking,” Neurology, vol. 73, no. 22, pp. 1914–1922, 2009.
[133]  C. Teunissen, T. Menge, A. Altintas, et al., “Consensus definitions and application guidelines for control groups in cerebrospinal fluid biomarker studies in multiple sclerosis,” Multiple Sclerosis, 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133