全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Investigation of Genetic Polymorphisms Related to the Outcome of Radiotherapy for Prostate Cancer Patients

DOI: 10.1155/2013/762685

Full-Text   Cite this paper   Add to My Lib

Abstract:

The purpose of this study was to evaluate the association between ATM, TP53 and MDM2 polymorphisms in prostate cancer patients and morbidity after radiotherapy. The presence of ATM (rs1801516), TP53 (rs1042522, rs1800371, rs17878362, rs17883323, and rs35117667), and MDM2 (rs2279744) polymorphisms was assessed by direct sequencing of PCR fragments from 48 patients with histologically proven prostate adenocarcinoma and treated with external beam radiation. The side effects were classified according to the Radiation Therapy Oncology Group (RTOG) score. The results showed no association between clinical characteristics and the development of radiation toxicities (P > 0.05). The C>T transition in the position 16273 (intron 3) of TP53 (rs35117667) was significantly associated with the risk of acute skin toxicity (OR: 0.0072, 95% CI 0.0002–0.227, P = 0.003). The intronic TP53 polymorphism at position 16250 (rs17883323) was associated with chronic urinary toxicity (OR: 0.071, 95%CI 0.006–0.784, P = 0.032). No significant associations were found for the remaining polymorphisms (P > 0.05). The results show that clinical characteristics were not determinant on the developing of radiation sensitivity in prostate cancer patients, and intronic TP53 polymorphisms would be associated with increased acute and chronic radiation toxicities. These observations corroborate the importance of investigating the genetic profile to predict adverse side effects in patients undergoing radiotherapy. 1. Introduction Radiotherapy is the most important nonsurgical modality for the curative treatment of cancer. The success of radiotherapy in eradicating a tumor depends mainly on the total radiation dose given, but the tolerance of the normal tissues surrounding the tumor limits this dose. There is a significant variation between patients regarding the severity of toxicity following a given dose of radiotherapy. As a consequence, the dose is submaximal in the majority of the radiotherapy patients [1]. Chronic side effects from radiotherapy are often irreversible and can decrease health-related quality of life as well as limit treatment intensity in radical radiotherapy regimens. Quantification of acute and chronic toxicity is therefore crucial in the assessment of the therapeutic benefit of radiotherapy. Various studies worldwide have attempted to identify common genetic variations associated with the development of radiation toxicity as a step in the process of identifying such a subset of toxicity prone patients [2, 3]. Researchers have long recognized that genetic variation

References

[1]  G. C. Barnett, C. M. L. West, A. M. Dunning et al., “Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype,” Nature Reviews Cancer, vol. 9, no. 2, pp. 134–142, 2009.
[2]  N. G. Burnet, R. M. Elliott, A. Dunning, and C. M. L. West, “Radiosensitivity, Radiogenomics and RAPPER,” Clinical Oncology, vol. 18, no. 7, pp. 525–528, 2006.
[3]  C. M. L. West, A. M. Dunning, and B. S. Rosenstein, “Genome-wide association studies and prediction of normal tissue toxicity,” Seminars in Radiation Oncology, vol. 22, no. 2, pp. 91–99, 2012.
[4]  J. A. Cesaretti, R. G. Stock, S. Lehrer et al., “ATM sequence variants are predictive of adverse radiotherapy response among patients treated for prostate cancer,” International Journal of Radiation Oncology Biology Physics, vol. 61, no. 1, pp. 196–202, 2005.
[5]  J. A. Cesaretti, R. G. Stock, D. P. Atencio et al., “A genetically determined dose-volume histogram predicts for rectal bleeding among patients treated with prostate brachytherapy,” International Journal of Radiation Oncology Biology Physics, vol. 68, no. 5, pp. 1410–1416, 2007.
[6]  C. A. Peters, R. G. Stock, J. A. Cesaretti et al., “TGFB1 single nucleotide polymorphisms are associated with adverse quality of life in prostate cancer patients treated with radiotherapy,” International Journal of Radiation Oncology Biology Physics, vol. 70, no. 3, pp. 752–759, 2008.
[7]  R. J. Burri, R. G. Stock, J. A. Cesaretti et al., “Association of single nucleotide polymorphisms in SOD2, XRCC1 and XRCC3 with susceptibility for the development of adverse effects resulting from radiotherapy for prostate cancer,” Radiation Research, vol. 170, no. 1, pp. 49–59, 2008.
[8]  S. L. Kerns, H. Ostrer, R. Stock et al., “Genome-wide association study to identify single nucleotide polymorphisms (SNPs) associated with the development of erectile dysfunction in African-American men after radiotherapy for prostate cancer,” International Journal of Radiation Oncology Biology Physics, vol. 78, no. 5, pp. 1292–1300, 2010.
[9]  G. Iliakis, “The role of DNA double strand breaks in ionizing radiation-induced killing of eukaryotic cells,” BioEssays, vol. 13, no. 12, pp. 641–648, 1991.
[10]  F. Altieri, C. Grillo, M. Maceroni, and S. Chichiarelli, “DNA damage and repair: from molecular mechanisms to health implications,” Antioxidants and Redox Signaling, vol. 10, no. 5, pp. 891–937, 2008.
[11]  A. J. Levine and M. Oren, “The first 30 years of p53: growing ever more complex,” Nature Reviews Cancer, vol. 9, no. 10, pp. 749–758, 2009.
[12]  M. B. Kastan and D.-S. Lim, “The many substrates and functions of ATM,” Nature Reviews Molecular Cell Biology, vol. 1, no. 3, pp. 179–186, 2000.
[13]  A. Tichy, J. Vávrová, J. Pejchal, and M. Rezácová, “Ataxia-telangiectasia mutated kinase (ATM) as a central regulator of radiation-induced DNA damage response,” Acta Medica, vol. 53, no. 1, pp. 13–17, 2010.
[14]  T. Soussi and K. G. Wiman, “Shaping genetic alterations in human cancer: the p53 mutation paradigm,” Cancer Cell, vol. 12, no. 4, pp. 303–312, 2007.
[15]  Y. Levav-Cohen, S. Haupt, and Y. Haupt, “Mdm2 in growth signaling and cancer,” Growth Factors, vol. 23, no. 3, pp. 183–192, 2005.
[16]  P. Dumont, J. I.-J. Leu, A. C. Della Pietra III, D. L. George, and M. Murphy, “The codon 72 polymorphic variants of p53 have markedly different apoptotic potential,” Nature Genetics, vol. 33, no. 3, pp. 357–365, 2003.
[17]  D. D. ?rsted, S. E. Bojesen, A. Tybj?rg-Hansen, and B. G. Nordestgaard, “Tumor suppressor p53 Arg72Pro polymorphism and longevity, cancer survival, and risk of cancer in the general population,” Journal of Experimental Medicine, vol. 204, no. 6, pp. 1295–1301, 2007.
[18]  X. Li, P. Dumont, A. Della Pietra, G. Shetler, and M. E. Murphy, “The codon 47 polymorphism in p53 is functionally significant,” Journal of Biological Chemistry, vol. 280, no. 25, pp. 24245–24251, 2005.
[19]  X.-L. Tan, O. Popanda, C. B. Ambrosone et al., “Association between TP53 and p21 genetic polymorphisms and acute side effects of radiotherapy in breast cancer patients,” Breast Cancer Research and Treatment, vol. 97, no. 3, pp. 255–262, 2006.
[20]  G. L. Bond, W. Hu, E. E. Bond et al., “A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans,” Cell, vol. 119, no. 5, pp. 591–602, 2004.
[21]  A. Y. Ho, G. Fan, D. P. Atencio et al., “Possession of ATM sequence variants as predictor for late normal tissue responses in breast cancer patients treated with radiotherapy,” International Journal of Radiation Oncology Biology Physics, vol. 69, no. 3, pp. 677–684, 2007.
[22]  C. E. Canman, D.-S. Lim, K. A. Cimprich et al., “Activation of the ATM kinase by ionizing radiation and phosphorylation of p53,” Science, vol. 281, no. 5383, pp. 1677–1679, 1998.
[23]  J. D. Cox, J. Stetz, and T. F. Pajak, “Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC),” International Journal of Radiation Oncology Biology Physics, vol. 31, no. 5, pp. 1341–1346, 1995.
[24]  C. N. Andreassen, J. Alsner, and J. Overgaard, “Does variability in normal tissue reactions after radiotherapy have a genetic basis—where and how to look for it?” Radiotherapy and Oncology, vol. 64, no. 2, pp. 131–140, 2002.
[25]  S. Angèle, P. Romestaing, N. Moullan et al., “ATM haplotypes and cellular response to DNA damage: association with breast cancer risk and clinical radiosensitivity,” Cancer Research, vol. 63, no. 24, pp. 8717–8725, 2003.
[26]  C. N. Andreassen, J. Overgaard, J. Alsner et al., “ATM sequence variants and risk of radiation-induced subcutaneous fibrosis after postmastectomy radiotherapy,” International Journal of Radiation Oncology Biology Physics, vol. 64, no. 3, pp. 776–783, 2006.
[27]  S. Damaraju, D. Murray, J. Dufour et al., “Association of DNA repair and steroid metabolism gene polymorphisms with clinical late toxicity in patients treated with conformal radiotherapy for prostate cancer,” Clinical Cancer Research, vol. 12, no. 8, pp. 2545–2554, 2006.
[28]  G. L. Bond, W. Hu, and A. Levine, “A single nucleotide polymorphism in the MDM2 gene: from a molecular and cellular explanation to clinical effect,” Cancer Research, vol. 65, no. 13, pp. 5481–5484, 2005.
[29]  S. L. Harris, G. Gil, H. Robins et al., “Detection of functional single-nucleotide polymorphisms that affect apoptosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 45, pp. 16297–16302, 2005.
[30]  O. Popanda, J. U. Marquardt, J. Chang-Claude, and P. Schmezer, “Genetic variation in normal tissue toxicity induced by ionizing radiation,” Mutation Research, vol. 667, no. 1-2, pp. 58–69, 2009.
[31]  J. J. Jaboin, M. Hwang, C. A. Perez et al., “No evidence for association of the MDM2-309 T/G promoter polymorphism with prostate cancer outcomes,” Urologic Oncology, vol. 29, no. 3, pp. 319–323, 2011.
[32]  L. Sreeja, V. Syamala, P. B. Raveendran, S. Santhi, J. Madhavan, and R. Ankathil, “p53 Arg72Pro polymorphism predicts survival outcome in lung cancer patients in Indian population,” Cancer Investigation, vol. 26, no. 1, pp. 41–46, 2008.
[33]  M. B. Parliament and D. Murray, “Single nucleotide polymorphisms of DNA repair genes as predictors of radioresponse,” Seminars in Radiation Oncology, vol. 20, no. 4, pp. 232–240, 2010.
[34]  T. Pugh, M. Keyes, L. Barclay et al., “Sequence variant discovery in DNA repair genes from radiosensitive and radiotolerant prostate brachytherapy patients,” Clinical Cancer Research, vol. 15, no. 15, pp. 5008–5016, 2009.
[35]  M. Yang, L. Zhang, N. Bi et al., “Association of P53 and ATM polymorphisms with risk of radiation-induced pneumonitis in lung cancer patients treated with radiotherapy,” International Journal of Radiation Oncology Biology Physics, vol. 79, no. 5, pp. 1402–1407, 2011.
[36]  G. Alsbeih, N. Al-Harbi, M. Al-Buhairi, K. Al-Hadyan, and M. Al-Hamed, “Association between TP53 codon 72 single-nucleotide polymorphism and radiation sensitivity of human fibroblasts,” Radiation Research, vol. 167, no. 5, pp. 535–540, 2007.
[37]  M. C. Zody, M. Garber, D. J. Adams et al., “DNA sequence of human chromosome 17 and analysis of rearrangement in the human lineage,” Nature, vol. 440, no. 7087, pp. 1045–1049, 2006.
[38]  H. I. Suzuki, K. Yamagata, K. Sugimoto, T. Iwamoto, S. Kato, and K. Miyazono, “Modulation of microRNA processing by p53,” Nature, vol. 460, no. 7254, pp. 529–533, 2009.
[39]  A. K. L. Leung and P. A. Sharp, “microRNAs: a safeguard against turmoil?” Cell, vol. 130, no. 4, pp. 581–585, 2007.
[40]  Z. Peng, Y. Cheng, B. C.-M. Tan et al., “Comprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptome,” Nature Biotechnology, vol. 30, no. 3, pp. 253–260, 2012.
[41]  F. Gemignani, V. Moreno, S. Landi et al., “A TP53 polymorphism is associated with increased risk of colorectal cancer and with reduced levels of TP53 mRNA,” Oncogene, vol. 23, no. 10, pp. 1954–1956, 2004.
[42]  V. Lazar, F. Hazard, F. Bertin, N. Janin, D. Bellet, and B. Bressac, “Simple sequence repeat polymorphism within the p53 gene,” Oncogene, vol. 8, no. 6, pp. 1703–1705, 1993.
[43]  C. West, B. S. Rosenstein, and J. Alsner, “Establishment of a radiogenomics consortium,” International Journal of Radiation Oncology, Biology, Physics, vol. 76, no. 5, pp. 1295–1296, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133