Rheumatoid factors are antibodies directed against the Fc region of immunoglobulin G. First detected in patients with rheumatoid arthritis 70 years ago, they can also be found in patients with other autoimmune and nonautoimmune conditions, as well as in healthy subjects. Rheumatoid factors form part of the workup for the differential diagnosis of arthropathies. In clinical practice, it is recommended to measure anti-cyclic citrullinated peptide antibodies and rheumatoid factors together because anti-cyclic citrullinated peptide antibodies alone are only moderately sensitive, and the combination of the two markers improves diagnostic accuracy, especially in the case of early rheumatoid arthritis. Furthermore, different rheumatoid factor isotypes alone or in combination can be helpful when managing rheumatoid arthritis patients, from the time of diagnosis until deciding on the choice of therapeutic strategy. 1. Introduction Rheumatoid factors (RFs), a class of immunoglobulins (Igs) that have different isotypes and affinities, were first detected more than 70 years ago, but there is still much to discover about the mechanisms underlying their production, physiological role, and pathological effects [1]. Waaler described an antibody directed against serum gamma-globulins that promoted the agglutination of sheep red blood cells sensitised by subagglutinating doses of rabbit antibodies in 1940 [2], although it had actually been previously found in patients with liver cirrhosis and chronic bronchitis by Kurt Meyer in 1922. In 1948, Rose described these antibodies in patients with rheumatoid arthritis (RA) [3], and in 1952 they were finally christened RFs because of their association with RA [4]. However, although they owe their name to their first detection in RA patients, RFs are found in patients with other autoimmune and nonautoimmune diseases, as well as-in healthy subjects. The aim of this review is to describe the clinical applications of testing for RFs. 2. Methods of Detection Classic agglutination techniques were initially used because of the ability of IgMs to induce agglutination. The first RF detection assay was based on the fact that RF agglutinates sheep red blood cells sensitised with rabbit IgGs (i.e., the classic Waaler-Rose test) [2, 3], and this was followed by the development of other IgG carriers such as bentonite [5, 6] and latex particles [7, 8]. Automated techniques such as nephelometry and enzyme-linked immunosorbent assays gradually replaced the other semiquantitative methods because of their simplicity and greater reproducibility
References
[1]
T. D?rner, K. Egerer, E. Feist, and G. R. Burmester, “Rheumatoid factor revisited,” Current Opinion in Rheumatology, vol. 16, no. 3, pp. 246–253, 2004.
[2]
E. Waaler, “On the occurrence of a factor in human serum activating the specific agglutination of sheep blood corpuscles,” Acta Pathologica Microbiologica Scandinavica, vol. 17, no. 2, pp. 172–188, 1940.
[3]
H. M. Rose, C. Ragan, et al., “Differential agglutination of normal and sensitized sheep erythrocytes by sera of patients with rheumatoid arthritis,” Proceedings of the Society for Experimental Biology and Medicine, vol. 68, no. 1, pp. 1–6, 1948.
[4]
R. M. Pike, S. E. Sulkin, and H. C. Coggeshall, “Serological reactions in rheumatoid arthritis; factors affecting the agglutination of sensitized sheep erythrocytes in rheumatid-arthritis serum,” Journal of Immunology, vol. 63, no. 4, pp. 441–446, 1949.
[5]
J. Ball, K. J. Bloch, T. A. Burch, J. H. Kellgren, J. S. Lawrence, and V. Tsigalidou, “Comparative studies of serologic tests for rheumatoid disease. II. A comparison of the bentonite flocculation test and the sensitized sheep cell agglutination test,” Arthritis and Rheumatism, vol. 5, pp. 61–69, 1962.
[6]
J. Ball, R. De Graaff, H. A. Valkenburg, and F. W. Boerma, “Comparative studies of serologic tests for rheumatoid disease. I. A comparison of a latex test and two erythrocyte agglutination tests in a random population sample,” Arthritis and Rheumatism, vol. 5, no. 1, pp. 55–60, 1962.
[7]
C. M. Plotz and J. M. Singer, “The latex fixation test. I. Application to the serologic diagnosis of rheumatoid arthritis,” The American Journal of Medicine, vol. 21, no. 6, pp. 888–892, 1956.
[8]
C. M. Plotz and J. M. Singer, “The latex fixation test. II. Results in rheumatoid arthritis,” The American Journal of Medicine, vol. 21, no. 6, pp. 893–896, 1956.
[9]
K. Ailus, L. Melamies, T. Tuomi, T. Palosuo, and K. Aho, “Measuring rheumatoid factor in nonrheumatoid subjects: immunoturbidimetric assay, latex slide test, and enzyme-linked immunosorbent assay compared,” Clinical Chemistry, vol. 37, no. 10, part 1, pp. 1766–1769, 1991.
[10]
F. Wolfe, M. A. Cathey, and F. K. Roberts, “The latex test revisited: rheumatoid factor testing in 8,287 rheumatic disease patients,” Arthritis and Rheumatism, vol. 34, no. 8, pp. 951–960, 1991.
[11]
J. G. Larkin, R. D. Sturrock, and W. H. Stimson, “A rapid enzyme immunoassay for the detection of IgM rheumatoid factor. A comparison of 'sero-negative' and 'sero-positive' rheumatoid patients,” Journal of Clinical and Laboratory Immunology, vol. 20, no. 4, pp. 207–209, 1986.
[12]
E. Ulvestad, L. L. Wilfred, and E. K. Kristoffersen, “Measurement of IgM rheumatoid factor by ELISA,” Scandinavian Journal of Rheumatology, vol. 30, no. 6, pp. 366–366, 2001.
[13]
I. Abreu, P. Laroche, A. Bastos et al., “Multiplexed immunoassay for detection of rheumatoid factors by FIDISTM technology,” Annals of the New York Academy of Sciences, vol. 1050, pp. 357–363, 2005.
[14]
D. F. LeGatt, G. B. Blakney, T. N. Higgins et al., “The effect of paraproteins and rheumatoid factor on four commercial immunoassays for vancomycin: implications for laboratorians and other health care professionals,” Therapeutic Drug Monitoring, vol. 34, no. 3, pp. 306–311, 2012.
[15]
G. M. Surnamebartels and G. Surnameribel-Madsen, “Cytokine measurements and possible interference from heterophilic antibodies—Problems and solutions experienced with rheumatoid factor,” Methods, vol. 61, no. 1, pp. 18–22, 2013.
[16]
S. Miyakis, M. D. Lockshin, T. Atsumi et al., “International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS),” Journal of Thrombosis and Haemostasis, vol. 4, no. 2, pp. 295–306, 2006.
[17]
G. Lakos, “Interference in antiphospholipid antibody assays,” Seminars in Thrombosis and Hemostasis, vol. 38, no. 4, pp. 353–359, 2012.
[18]
D. L. Stevenson, A. G. Harris, K. R. Neal, and W. L. Irving, “The presence of rheumatoid factor in sera from anti-HCV positive blood donors interferes with the detection of HCV-specific IgM,” Journal of Hepatology, vol. 25, no. 5, pp. 621–626, 1996.
[19]
O. H. Meurman and B. R. Ziola, “IgM-class rheumatoid factor interference in the solid-phase radioimmunoassay of rubella-specific IgM antibodies,” Journal of Clinical Pathology, vol. 31, no. 5, pp. 483–487, 1978.
[20]
N. Després and A. M. Grant, “Antibody interference in thyroid assays: a potential for clinical misinformation,” Clinical Chemistry, vol. 44, no. 3, pp. 440–454, 1998.
[21]
A. M. Ramos-Levi, M. C. Montanez, I. Ortega, M. J. Cobo, and A. L. Calle-Pascual, “A case of biochemical assay discrepancy: interference with measurement of thyroid-stimulating hormone due to rheumatoid factor,” Endocrinología y Nutrición, vol. 60, no. 6, pp. 342–345, 2013.
[22]
M. Berth, E. Bosmans, J. Everaert et al., “Rheumatoid factor interference in the determination of carbohydrate antigen 19-9 (CA 19-9),” Clinical Chemistry and Laboratory Medicine, vol. 44, no. 9, pp. 1137–1139, 2006.
[23]
E. Bartels, I. Falbe, E. Andersen, B. Danneskiold-Sams?e, H. Bliddal, and S. Ribel-Madsen, “Rheumatoid factor and its interference with cytokine measurements: problems and solutions,” Arthritis, vol. 2011, Article ID 741071, 7 pages, 2011.
[24]
M. M. Newkirk, “Rheumatoid factors: host resistance or autoimmunity?” Clinical Immunology, vol. 104, no. 1, pp. 1–13, 2002.
[25]
R. H. Shmerling and T. L. Delbanco, “The rheumatoid factor: an analysis of clinical utility,” American Journal of Medicine, vol. 91, no. 5, pp. 528–534, 1991.
[26]
O. M. R. Westwood, P. N. Nelson, and F. C. Hay, “Rheumatoid factors: what's new?” Rheumatology, vol. 45, no. 4, pp. 379–385, 2006.
[27]
D. W. Dresser and A. M. Popham, “Induction of an IgM anti (bovine) IgG response in mice by bacterial lipopolysaccharide,” Nature, vol. 264, no. 5586, pp. 552–554, 1976.
[28]
L. Slaughter, D. A. Carson, and F. C. Jensen, “In vitro effects of Epstein-Barr virus on peripheral blood mononuclear cells from patients with rheumatoid arthritis and normal subjects,” Journal of Experimental Medicine, vol. 148, no. 5, pp. 1429–1434, 1978.
[29]
C. Palazzi, D. Buskila, S. D'Angelo, E. D'Amico, and I. Olivieri, “Autoantibodies in patients with chronic hepatitis C virus infection: pitfalls for the diagnosis of rheumatic diseases,” Autoimmunity Reviews, vol. 11, no. 9, pp. 659–663, 2011.
[30]
E. D. Charles, M. I. Orloff, E. Nishiuchi, S. Marukian, C. M. Rice, and L. B. Dustin, “Somatic hypermutations confer rheumatoid factor activity in hepatitis C virus-associated mixed cryoglobulinemia,” Arthritis and Rheumatism, vol. 65, no. 9, pp. 243–240, 2013.
[31]
M. B?rretzen, C. Chapman, J. B. Natvig, and K. M. Thompson, “Differences in mutational patterns between rheumatoid factors in health and disease are related to variable heavy chain family and germ-line gene usage,” European Journal of Immunology, vol. 27, no. 3, pp. 735–741, 1997.
[32]
J. F. Simard and M. Holmqvist, “Rheumatoid factor positivity in the general population,” British Medical Journal, vol. 345, article e5841, 2012.
[33]
T. Tasliyurt, B. Kisacik, S. U. Kaya et al., “The frequency of antibodies against cyclic citrullinated peptides and rheumatoid factor in healthy population: a field study of rheumatoid arthritis from northern turkey,” Rheumatology International, vol. 33, no. 4, pp. 939–942, 2013.
[34]
M. M. Newkirk, “Rheumatoid factors: what do they tell us?” Journal of Rheumatology, vol. 29, no. 10, pp. 2034–2040, 2002.
[35]
L. T. H. Jacobsson, W. C. Knowler, S. Pillemer et al., “Rheumatoid arthritis and mortality. A longitudinal study in Pima Indians,” Arthritis and Rheumatism, vol. 36, no. 8, pp. 1045–1053, 1993.
[36]
T. Korpil?hde, M. Heli?vaara, O. Kaipiainen-Sepp?nen, P. Knekt, and K. Aho, “Regional differences in Finland in the prevalence of rheumatoid factor in the presence and absence of arthritis,” Annals of the Rheumatic Diseases, vol. 62, no. 4, pp. 353–355, 2003.
[37]
D. W. Dresser, “Most IgM-producing cells in the mouse secrete auto-antibodies (rheumatoid factor),” Nature, vol. 274, no. 5670, pp. 480–483, 1978.
[38]
S. F. Nielsen, S. E. Bojesen, P. Schnohr, and B. G. Nordestgaard, “Elevated rheumatoid factor and long term risk of rheumatoid arthritis: a prospective cohort study,” Britich Medical Journal, vol. 345, article e5244, 2012.
[39]
D. Van Schaardenburg, A. M. Lagaay, F. C. Breedveld, W. Hijmans, and J. P. Vandenbroucke, “Rheumatoid arthritis in a population of persons aged 85 years and over,” British Journal of Rheumatology, vol. 32, no. 2, pp. 104–109, 1993.
[40]
J. Ursum, W. H. Bos, R. J. Van de Stadt, B. A. C. Dijkmans, and D. Van Schaardenburg, “Different properties of ACPA and IgM-RF derived from a large dataset: further evidence of two distinct autoantibody systems,” Arthritis Research and Therapy, vol. 11, no. 3, article R75, 2009.
[41]
C. Díaz-López, C. Geli, H. Corominas et al., “Are there clinical or serological differences between male and female patients with primary Sj?gren's syndrome?” Journal of Rheumatology, vol. 31, no. 7, pp. 1352–1355, 2004.
[42]
D. Sansonno, G. Lauletta, L. Nisi et al., “Non-enveloped HCV core protein as constitutive antigen of cold-precipitable immune complexes in type II mixed cryoglobulinaemia,” Clinical and Experimental Immunology, vol. 133, no. 2, pp. 275–282, 2003.
[43]
Y. Masaki and S. Sugai, “Lymphoproliferative disorders in Sj?gren's syndrome,” Autoimmunity Reviews, vol. 3, no. 3, pp. 175–182, 2004.
[44]
W. Swedler, J. Wallman, C. J. Froelich, and M. Teodorescu, “Routine measurement of IgM, IgG, and IgA rheumatoid factors: high sensitivity, specificity, and predictive value for rheumatoid arthritis,” Journal of Rheumatology, vol. 24, no. 6, pp. 1037–1044, 1997.
[45]
D. Aletaha, F. Alasti, and J. S. Smolen, “Rheumatoid factor determines structural progression of rheumatoid arthritis dependent and independent of disease activity,” Annals of the Rheumatic Diseases, vol. 72, no. 6, pp. 875–880, 2013.
[46]
K. Nishimura, D. Sugiyama, Y. Kogata et al., “Meta-analysis: diagnostic accuracy of anti-cyclic citrullinated peptide antibody and rheumatoid factor for rheumatoid arthritis,” Annals of Internal Medicine, vol. 146, no. 11, pp. 797–808, 2007.
[47]
V. P. K. Nell, K. P. Machold, T. A. Stamm et al., “Autoantibody profiling as early diagnostic and prognostic tool for rheumatoid arthritis,” Annals of the Rheumatic Diseases, vol. 64, no. 12, pp. 1731–1736, 2005.
[48]
N. J. Zvaifler, “The immunopathology of joint inflammation in rheumatoid arthritis,” Advances in Immunology, vol. 16, no. C, pp. 265–336, 1973.
[49]
A. M. Haberman, J. William, C. Euler, and M. J. Shlomchik, “Rheumatoid factors in health and disease: structure, function, induction and regulation,” Current Directions in Autoimmunity, vol. 6, pp. 169–195, 2003.
[50]
J. J. Stewart, H. Agosto, S. Litwin et al., “A solution to the rheumatoid factor paradox: pathologic rheumatoid factors can be tolerized by competition with natural rheumatoid factors,” Journal of Immunology, vol. 159, no. 4, pp. 1728–1738, 1997.
[51]
D. M. Lee, D. S. Friend, M. F. Gurish, C. Benoist, D. Mathis, and M. B. Brenner, “Mast cells: a cellular link between autoantibodies and inflammatory arthritis,” Science, vol. 297, no. 5587, pp. 1689–1692, 2002.
[52]
R. A. Sweet, J. L. Cullen, and M. J. Shlomchik, “Rheumatoid factor B cell memory leads to rapid, switched antibody-forming cell responses,” Journal of Immunology, vol. 190, no. 5, pp. 1974–1981, 2013.
[53]
S. E. Burastero, P. Casali, R. L. Wilder, and A. L. Notkins, “Monoreactive high affinity and polyreactive low affinity rheumatoid factors are produced by CD5+ B cells from patients with rheumatoid arthritis,” Journal of Experimental Medicine, vol. 168, no. 6, pp. 1979–1992, 1988.
[54]
H. W. Schroeder Jr. and L. Cavacini, “Structure and function of immunoglobulins,” Journal of Allergy and Clinical Immunology, vol. 125, no. 2, pp. S41–S52, 2010.
[55]
T. Jónsson, K. Steinsson, H. Jónsson, á. J. Geirsson, J. Thorsteinsson, and H. Valdimarsson, “Combined elevation of IgM and IgA rheumatoid factor has high diagnostic specificity for rheumatoid arthritis,” Rheumatology International, vol. 18, no. 3, pp. 119–122, 1998.
[56]
T. Jónsson and H. Valdimarsson, “What about IgA rheumatoid factor in rheumatoid arthritis?” Annals of the Rheumatic Diseases, vol. 57, no. 1, pp. 63–64, 1998.
[57]
K. D. Deane, C. I. O'Donnell, W. Hueber et al., “The number of elevated cytokines and chemokines in preclinical seropositive rheumatoid arthritis predicts time to diagnosis in an age-dependent manner,” Arthritis and Rheumatism, vol. 62, no. 11, pp. 3161–3172, 2010.
[58]
A. Miller, K. R. Mahtani, M. A. Waterfield, A. Timms, S. A. Misbah, and R. A. Luqmani, “Is rheumatoid factor useful in primary care? A retrospective cross-sectional study,” Clinical Rheumatology, vol. 32, no. 7, pp. 1089–1093, 2013.
[59]
F. C. Arnett, S. M. Edworthy, D. A. Bloch et al., “The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis,” Arthritis and Rheumatism, vol. 31, no. 3, pp. 315–324, 1988.
[60]
D. Aletaha, T. Neogi, A. J. Silman et al., “2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative,” Arthritis and Rheumatism, vol. 62, no. 9, pp. 2569–2581, 2010.
[61]
S. Bas, S. Genevay, O. Meyer, and C. Gabay, “Anti-cyclic citrullinated peptide antibodies, IgM and IgA rheumatoid factors in the diagnosis and prognosis of rheumatoid arthritis,” Rheumatology, vol. 42, no. 5, pp. 677–680, 2003.
[62]
S. Rantap??-Dahlqvist, B. A. W. De Jong, E. Berglin et al., “Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis,” Arthritis and Rheumatism, vol. 48, no. 10, pp. 2741–2749, 2003.
[63]
B. E. Gilliam and T. L. Moore, “The role of anti-cyclic citrullinated peptide (CCP) antibodies in early detection of rheumatoid arthritis: an overview of the INOVA Diagnostics, Inc. QUANTA Lite CCP assays,” Expert Opinion on Medical Diagnostics, vol. 6, no. 4, pp. 359–369, 2012.
[64]
D. Manivelavan and C. K. Vijayasamundeeswari, “Anti-cyclic citrullinated peptide antibody: an early diagnostic and prognostic biomarker of rheumatoid arthritis,” Journal of Clinical and Diagnostic Research, vol. 6, no. 8, pp. 1393–1396, 2012.
[65]
C. Peoples, R. Valiyil, R. B. Davis, and R. H. Shmerling, “Clinical use of anti-cyclic citrullinated Peptide antibody testing,” Journal of Clinical Rheumatology, vol. 19, no. 6, pp. 351–352, 2013.
[66]
M. K. Demoruelle, M. C. Parish, L. A. Derber et al., “Anti-cyclic citrullinated peptide assays differ in subjects at elevated risk for rheumatoid arthritis and subjects with established disease,” Arthritis and Rheumatism, vol. 65, no. 9, pp. 2243–2252, 2013.
[67]
F. Debaugnies, G. Servais, V. Badot, D. Noubouossie, D. Willems, and F. Corazza, “Anti-cyclic citrullinated peptide antibodies: a comparison of different assays for the diagnosis of rheumatoid arthritis,” Scandinavian Journal of Rheumatology, vol. 42, no. 2, pp. 108–114, 2013.
[68]
S. Rantap??-Dahlqvist, “What happens before the onset of rheumatoid arthritis?” Current Opinion in Rheumatology, vol. 21, no. 3, pp. 272–278, 2009.
[69]
K. D. Deane, J. M. Norris, and V. M. Holers, “Preclinical rheumatoid arthritis: identification, evaluation, and future directions for investigation,” Rheumatic Disease Clinics of North America, vol. 36, no. 2, pp. 213–241, 2010.
[70]
T. Tillmann, R. Krishnadas, J. Cavanagh, and K. Petrides, “Possible rheumatoid arthritis subtypes in terms of rheumatoid factor, depression, diagnostic delay and emotional expression: an exploratory case-control study,” Arthritis Research and Therapy, vol. 15, no. 2, article R45, 2013.
[71]
L. Barra, V. Bykerk, J. E. Pope et al., “Anticitrullinated protein antibodies and rheumatoid factor fluctuate in early inflammatory arthritis and do not predict clinical outcomes,” Journal of Rheumatology, vol. 40, no. 8, pp. 1259–1267, 2013.
[72]
T. R. Mikuls, J. R. O'Dell, J. A. Stoner et al., “Association of rheumatoid arthritis treatment response and disease duration with declines in serum levels of IgM rheumatoid factor and anti-cyclic citrullinated peptide antibody,” Arthritis and Rheumatism, vol. 50, no. 12, pp. 3776–3782, 2004.
[73]
F. Bobbio-Pallavicini, C. Alpini, R. Caporali, S. Avalle, S. Bugatti, and C. Montecucco, “Autoantibody profile in rheumatoid arthritis during long-term infliximab treatment,” Arthritis research & therapy, vol. 6, no. 3, pp. R264–272, 2004.
[74]
L. De Rycke, X. Verhelst, E. Kruithof et al., “Rheumatoid factor, but not anti-cyclic citrullinated peptide antibodies, is modulated by infliximab treatment in rheumatoid arthritis,” Annals of the Rheumatic Diseases, vol. 64, no. 2, pp. 299–302, 2005.
[75]
P. Caramaschi, D. Biasi, E. Tonolli et al., “Antibodies against cyclic citrullinated peptides in patients affected by rheumatoid arthritis before and after infliximab treatment,” Rheumatology International, vol. 26, no. 1, pp. 58–62, 2005.
[76]
H. A. Chen, K. C. Lin, C. H. Chen et al., “The effect of etanercept on anti-cyclic citrullinated peptide antibodies and rheumatoid factor in patients with rheumatoid arthritis,” Annals of the Rheumatic Diseases, vol. 65, no. 1, pp. 35–39, 2006.
[77]
F. Atzeni, P. Sarzi-Puttini, D. Dell' Acqua et al., “Adalimumab clinical efficacy is associated with rheumatoid factor and anti-cyclic citrullinated peptide antibody titer reduction: a one-year prospective study,” Arthritis Research & Therapy, vol. 8, no. 1, article R3, 2006.
[78]
G. Cambridge, M. J. Leandro, J. C. W. Edwards et al., “Serologic changes following B lymphocyte depletion therapy for rheumatoid arthritis,” Arthritis and Rheumatism, vol. 48, no. 8, pp. 2146–2154, 2003.
[79]
S. B. Cohen, P. Emery, M. W. Greenwald et al., “Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks,” Arthritis and Rheumatism, vol. 54, no. 9, pp. 2793–2806, 2006.
[80]
R. J. Maneiro, E. Salgado, L. Carmona, and J. J. Gomez-Reino, “Rheumatoid factor as predictor of response to abatacept, rituximab and tocilizumab in rheumatoid arthritis: systematic review and meta-analysis,” Seminars in Arthritis and Rheumatism, vol. 43, no. 1, pp. 9–17, 2013.
[81]
C. Faillace and J. F. de Carvalho, “Rheumatoid factor appearance after tocilizumab treatment seems to predict bad therapeutical response in rheumatoid arthritis,” Rheumatology International, pp. 1909–1910, 2013.
[82]
K. L. Hyrich, K. D. Watson, A. J. Silman, and D. P. M. Symmons, “Predictors of response to anti-TNF-α therapy among patients with rheumatoid arthritis: results from the British Society for Rheumatology Biologics Register,” Rheumatology, vol. 45, no. 12, pp. 1558–1565, 2006.
[83]
W. H. Bos, G. M. Bartelds, G. J. Wolbink et al., “Differential response of the rheumatoid factor and anticitrullinated protein antibodies during adalimumab treatment in patients with rheumatoid arthritis,” Journal of Rheumatology, vol. 35, no. 10, pp. 1972–1977, 2008.
[84]
E. Salgado, J. R. Maneiro, L. Carmona, and J. Gomez-Reino, “nd response to TNF antagonists in rheumatoid arthritis: systematic review and meta-analysis of observational studies,” Joint Bone Spine, 2013.
[85]
E. Salgado, J. R. Maneiro, L. Carmona, and J. J. Gomez-Reino, “Safety profile of protein kinase inhibitors in rheumatoid arthritis: systematic review and meta-analysis,” Annals of the Rheumatic Diseases, 2013.
[86]
R. Klaasen, T. Cantaert, C. A. Wijbrandts et al., “The value of rheumatoid factor and anti-citrullinated protein antibodies as predictors of response to infliximab in rheumatoid arthritis: an exploratory study,” Rheumatology, vol. 50, no. 8, pp. 1487–1493, 2011.
[87]
C. Potter, K. L. Hyrich, A. Tracey et al., “Association of rheumatoid factor and anti-cyclic citrullinated peptide positivity, but not carriage of shared epitope or PTPN22 susceptibility variants, with anti-tumour necrosis factor response in rheumatoid arthritis,” Annals of the Rheumatic Diseases, vol. 68, no. 1, pp. 69–74, 2009.
[88]
F. Bobbio-Pallavicini, R. Caporali, C. Alpini, R. Moratti, and C. Montecucco, “Predictive value of antibodies to citrullinated peptides and rheumatoid factors in anti-TNF-α treated patients,” Annals of the New York Academy of Sciences, vol. 1109, pp. 287–295, 2007.
[89]
J. C. W. Edwards, L. Szczepański, J. Szechiński et al., “Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis,” The New England Journal of Medicine, vol. 350, no. 25, pp. 2572–2581, 2004.
[90]
L. Quartuccio, M. Fabris, S. Salvin et al., “Rheumatoid factor positivity rather than anti-CCP positivity, a lower disability and a lower number of anti-TNF agents failed are associated with response to rituximab in rheumatoid arthritis,” Rheumatology, vol. 48, no. 12, pp. 1557–1559, 2009.
[91]
J. D. Isaacs, S. B. Cohen, P. Emery et al., “Effect of baseline rheumatoid factor and anticitrullinated peptide antibody serotype on rituximab clinical response: a meta-analysis,” Annals of the Rheumatic Diseases, vol. 72, no. 3, pp. 329–336, 2013.
[92]
J. D. Jones, I. Shyu, M. M. Newkirk, and W. F. Rigby, “A rheumatoid factor paradox: inhibition of rituximab effector function,” Arthritis Research and Therapy, vol. 15, no. 1, article R20, 2013.