Objective. This study investigated the association of the single nucleotide polymorphisms (SNPs) in the FAS and FASL genes with the outcome of hepatitis B virus (HBV) infection. Methods. Blood samples were collected from 116 HBV-infected patients at the Hospital of the Santa Casa de Misericordia Foundation (Belém, PA, Brazil). Seronegative individuals were used as controls. DNA samples were extracted from the leukocytes and assayed using the polymerase chain reaction (PCR) followed by RFLP analysis with restriction endonucleases. Results. The frequencies of the mutant genotypes for -670FAS (GG), Ivs2nt-124FASL (GG), Ivs3nt-169FASL ( T/ T), and -844FASL (TT) were higher in the HBV patients, and the FAS-1377AA genotype was more frequent in the control group; however, the differences between the allele and genotype frequencies were not statistically significant. When the HBV patient population was divided into two groups (inactive carriers and active chronic hepatitis patients), the mutant genotypes were found to be more prevalent in the active chronic hepatitis group with respect to the FAS gene polymorphisms; however, this difference was not statistically significant. Conclusions. The results suggest that the polymorphisms in FAS and FASL genes are not associated with HBV infection or even with the natural history of the infection in the Brazilian Amazon region. 1. Introduction The hepatitis B virus (HBV) is a member of the Hepadnaviridae family and the Orthohepadnavirus genus and shares structural and functional characteristics with other family members, such as tropism for hepatic cells, enveloped viral particles, an incomplete double-stranded DNA genome, and viral replication via reverse transcription [1]. In approximately 3–8% of adults infected with HBV, the immune defense system cannot destroy the infected hepatocytes and the inflammation process (hepatitis) persists. When the virus persists for more than 6 months, the infection is defined as chronic hepatitis and the chance of spontaneous healing is very low. When the HBV infection becomes chronic, it is a significant cause of hepatic cirrhosis and hepatocellular carcinoma (HCC) [2, 3]. In the mid-1990s, Suda and colleagues identified a molecule that initiates the process of programmed cell death (apoptosis). This new molecule was reported to bind to a cell membrane receptor (Fas) encoded by the FAS gene and was termed the Fas ligand (FasL) [4, 5]. The FAS gene is located on human chromosome 10q24.1, contains 9 exons and 8 introns, and encodes a 334-amino acid protein. The Fas receptor is
References
[1]
D. Ganem and R. J. Schneider, “Hepadnaviridae: the viruse and their replication,” in Fields Virology, D. Knipe and P. Howley, Eds., vol. 2, pp. 2923–2969, Lippincott, Williams & Wilkins, Philadelphia, Pa, USA, 4th edition, 2001.
[2]
J. N. Zuckerman and A. J. Zuckerman, “Current topics in hepatitis B,” Journal of Infection, vol. 41, no. 2, pp. 130–136, 2000.
[3]
W. M. Lee, “Hepatitis B virus infection,” The New England Journal of Medicine, vol. 337, no. 24, pp. 1733–1745, 1997.
[4]
T. Suda and S. Nagata, “Purification and characterization of the Fas-ligand that induces apoptosis,” Journal of Experimental Medicine, vol. 179, no. 3, pp. 873–879, 1994.
[5]
T. Suda, T. Takahashi, P. Golstein, and S. Nagata, “Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family,” Cell, vol. 75, no. 6, pp. 1169–1178, 1993.
[6]
F. Leithauser, J. Dhein, G. Mechtersheimer et al., “Constitutive and induced expression of APO-1, a new member of the nerve growth factor/tumor necrosis factor receptor superfamily, in normal and neoplastic cells,” Laboratory Investigation, vol. 69, no. 4, pp. 415–429, 1993.
[7]
T. A. Ferguson and T. S. Griffith, “A vision of cell death: Fas ligand and immune privilege 10 years later,” Immunological Reviews, vol. 213, no. 1, pp. 228–238, 2006.
[8]
D. R. Green and T. A. Ferguson, “The role of fas ligand in immune privilege,” Nature Reviews Molecular Cell Biology, vol. 2, no. 12, pp. 917–924, 2001.
[9]
A. Ashkenazi and V. M. Dixit, “Death receptors: signaling and modulation,” Science, vol. 281, no. 5381, pp. 1305–1308, 1998.
[10]
Y. Li, Y. Hao, S. Kang, R. Zhou, N. Wang, and B. L. Qi, “Genetic polymorphisms in the Fas and FasL genes are associated with epithelial ovarian cancer risk and clinical outcomes,” Gynecologic Oncology, vol. 128, pp. 584–589, 2013.
[11]
W. Wang, Z. Zheng, W. Yu, H. Lin, B. Cui, and F. Cao, “Polymorphisms of the FAS and FASL genes and risk of breast cancer,” Oncology Letters, vol. 3, no. 3, pp. 625–628, 2012.
[12]
J. Tian, F. Pan, J. Li et al., “Association between the FAS/FASL polymorphisms and gastric cancer risk: a meta-analysis,” The Asian Pacific Journal of Cancer Prevention, vol. 13, pp. 945–951, 2012.
[13]
W. Mahfoudh, N. Bouaouina, S. Gabbouj, and L. Chouchane, “FASL-844 T/C polymorphism: a biomarker of good prognosis of breast cancer in the Tunisian population,” Human Immunology, vol. 73, pp. 932–938, 2012.
[14]
W. Sung, Y. Wang, Y. Cheng et al., “A polymorphic -844T/C in FasL promoter predicts survival and relapse in non-small cell lung cancer,” Clinical Cancer Research, vol. 17, no. 18, pp. 5991–5999, 2011.
[15]
P. Shao, Q. Ding, C. Qin et al., “Functional polymorphisms in cell death pathway genes FAS and FAS ligand and risk of prostate cancer in a Chinese population,” Prostate, vol. 71, no. 10, pp. 1122–1130, 2011.
[16]
J. Zhu, C. Qin, M. Wang et al., “Functional polymorphisms in cell death pathway genes and risk of renal cell carcinoma,” Molecular Carcinogenesis, vol. 49, no. 9, pp. 810–817, 2010.
[17]
Z. Zhang, L. Wang, E. M. Sturgis et al., “Polymorphisms of FAS and FAS ligand genes involved in the death pathway and risk and progression of squamous cell carcinoma of the head and neck,” Clinical Cancer Research, vol. 12, no. 18, pp. 5596–5602, 2006.
[18]
J. Park, W. Lee, D. Jung et al., “Polymorphisms in the FAS and FASL genes and survival of early stage non-small cell lung cancer,” Clinical Cancer Research, vol. 15, no. 5, pp. 1794–1800, 2009.
[19]
L. Lima, A. Morais, F. Lobo, F. M. Calais-da-Silva, F. E. Calais-da-Silva, and R. Medeiros, “Association between FAS polymorphism and prostate cancer development,” Prostate Cancer and Prostatic Diseases, vol. 11, no. 1, pp. 94–98, 2008.
[20]
K. D. Crew, M. D. Gammon, M. B. Terry et al., “Genetic polymorphisms in the apoptosis-associated genes FAS and FASL and breast cancer risk,” Carcinogenesis, vol. 28, no. 12, pp. 2548–2551, 2007.
[21]
M. Nasi, M. Pinti, R. Bugarini et al., “Genetic polymorphisms of Fas (CD95) and Fas ligand (CD178) influence the rise in CD4+ T cell count after antiretroviral therapy in drug-na?ve HIV-positive patients,” Immunogenetics, vol. 57, no. 9, pp. 628–635, 2005.
[22]
M. Pinti, L. Troiano, M. Nasi et al., “Genetic polymorphisms of Fas (CD95) and FasL (CD178) in human longevity: studies on centenarians,” Cell Death and Differentiation, vol. 9, no. 4, pp. 431–438, 2002.
[23]
Q. R. Huang and N. Manolios, “Investigation of the -1377 polymorphism on the Apo-1/FAS promoter in systemic lupus erythematosus patients using allele-specific amplification,” Pathology, vol. 32, no. 2, pp. 126–130, 2000.
[24]
Q. R. Huang, D. Morris, and N. Manolios, “Identification and characterisation of polymorphisms in the promoter region of the human Apo-1/Fas (CD95) gene,” Molecular Immunology, vol. 34, no. 8-9, pp. 577–582, 1997.
[25]
T. Sun, X. Miao, X. Zhang, W. Tan, P. Xiong, and D. Lin, “Polymorphisms of death pathway genes FAS and FASL in esophageal squamous-cell carcinoma,” Journal of the National Cancer Institute, vol. 96, no. 13, pp. 1030–1036, 2004.
[26]
A. C. R. Vallinoto, B. B. Santana, E. L. dos Santos et al., “FAS -670A/G single nucleotide polymorphism may be associated with human T lymphotropic virus-1 infection and clinical evolution to TSP/HAM,” Virus Research, vol. 163, no. 1, pp. 178–182, 2012.
[27]
M. Ayres, M. Ayres Jr., D. L. Ayres, and A. S. Santos, BioEstat 5. 0: aplica??es estatísticas nas áreas de ciências biológicas e médicas, Sociedade Civil Mamirauá, CNPq, Belem, Brazil, 2010.
[28]
K. Chatterjee, C. Dandara, U. Gyllensten et al., “A fas gene polymorphism influences herpes simplex virus type 2 infection in South African women,” Journal of Medical Virology, vol. 82, no. 12, pp. 2082–2086, 2010.
[29]
L. Farre, A. L. Bittencourt, G. Silva-Santos et al., “Fas-670 promoter polymorphism is associated to susceptibility, clinical presentation, and survival in adult T cell leukemia,” Journal of Leukocyte Biology, vol. 83, no. 1, pp. 220–222, 2008.
[30]
J. Kupcinskas, T. Wex, J. Bornschein et al., “Lack of association between gene polymorphisms of Angiotensin converting enzyme, Nod-like receptor 1, Toll-like receptor 4, FAS/FASL and the presence of Helicobacter pylori-induced premalignant gastric lesions and gastric cancer in Caucasians,” BMC Medical Genetics, vol. 12, article 112, 9 pages, 2011.
[31]
K. Chatterjee, M. Engelmark, U. Gyllensten et al., “Fas and FasL gene polymorphisms are not associated with cervical cancer but differ among Black and Mixed-ancestry South Africans,” BMC Research Notes, vol. 2, article 238, 6 pages, 2009.
[32]
F. Rudert, E. Visser, L. Forbes, E. Lindridge, Y. Wang, and J. Watson, “Identification of a silencer, enhancer, and basal promoter region in the human CD95 (Fas/APO-1) gene,” DNA and Cell Biology, vol. 14, no. 11, pp. 931–937, 1995.
[33]
K. Sibley, S. Rollinson, J. M. Allan et al., “Functional FAS promoter polymorphisms are associated with increased risk of acute myeloid leukemia,” Cancer Research, vol. 63, no. 15, pp. 4327–4330, 2003.
[34]
Y. J. Jung, Y. J. Kim, L. H. Kim et al., “Putative association of Fas and FasL gene polymorphisms with clinical outcomes of hepatitis B virus infection,” Intervirology, vol. 50, no. 5, pp. 369–376, 2007.
[35]
J. Wu, C. Metz, X. Xu et al., “A novel polymorphic CAAT/enhancer-binding protein β element in the FasL gene promoter alters Fas ligand expression: a candidate background gene in African American systemic lupus erythematosus patients,” Journal of Immunology, vol. 170, no. 1, pp. 132–138, 2003.
[36]
A. Vasilescu, S. C. Heath, G. Diop et al., “Genomic analysis of Fas and FasL genes and absence of correlation with disease progression in AIDS,” Immunogenetics, vol. 56, no. 1, pp. 56–60, 2004.